Subsections

6-3

以下の式を証明せよ。

$\displaystyle \frac{\vn \times \left\{ \left(\vn-\bm{\beta}(t')\right)\times \d...
...\{ \frac{\vn\times \left(\vn \times \bm{\beta}(t')\right)}{\kappa(t')} \right\}$ (43)

6-3解答

$\displaystyle \vn\times \left\{ \left(\vn-\bm{\beta}(t')\right)\times \dot{\bm{\beta}}(t')\right\}$ $\displaystyle = -\dot{\bm{\beta}}(t')+ \left(\vn\cdot \bm{\beta}(t')\right)\dot...
...t')+ \left(\vn \cdot \dot{\bm{\beta}}(t')\right)\left(\vn-\bm{\beta}(t')\right)$    
$\displaystyle \vn\times \left(\vn\times \bm{\beta}(t')\right)$ $\displaystyle =-\bm{\beta}(t')+ \left( \vn \cdot \bm{\beta}(t')\right)\vn$    

$\displaystyle \dI{t'}\left\{ \frac{\vn\times \left(\vn \times \bm{\beta}(t')\right)}{\kappa(t')} \right\}$ $\displaystyle =\frac{ \vn\times \left(\vn \times \dot{\bm{\beta}}(t')\right)\ka...
...ft\{ \vn \times \left(\vn \times \bm{\beta}(t')\right)\right\} } {\kappa^2(t')}$    
  $\displaystyle = \frac{ \vn\times \left(\vn \times \dot{\bm{\beta}}(t')\right) \...
...ft\{ \vn \times \left(\vn \times \bm{\beta}(t')\right)\right\} } {\kappa^2(t')}$    
  $\displaystyle =\frac{ -\dot{\bm{\beta}}(t') +\left(\vn\cdot \dot{\bm{\beta}}(t'...
...(t') -\left(\vn\cdot \dot{\bm{\beta}}(t')\right)\bm{\beta}(t') } {\kappa^2(t')}$    
  $\displaystyle =\frac{-\dot{\bm{\beta}}(t')+\left(\vn\cdot \bm{\beta}(t')\right)...
...ft(\vn -\bm{\beta}(t')\right)\times \dot{\bm{\beta}}(t')\right\}}{\kappa^2(t')}$    

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp