Subsections

6-4

以上からフーリエスペクトルが以下の式で与えあれることを示せ。

$\displaystyle \hat{\vE}(\vr,\omega) =\frac{q}{2\pi c R}e^{i\omega \vn\cdot \vr/...
...bm{\beta}(t')\right)e^{i\omega \left(t'-\vn \cdot \vr(t')/c\right)} \right\}dt'$ (44)

6-4解答

$\displaystyle \hat{\vE}(\vr,\omega)$ $\displaystyle =\frac{q}{2\pi cR} e^{i\omega \vn\cdot \vr/c} \int_{T_1'}^{T_2'} ...
...)} {\kappa(t')} \right\}\,e^{+i\omega \left(t' -\vn\cdot \vr_0(t')/c\right)}dt'$    
  $\displaystyle = \frac{q}{2\pi c R}e^{i\omega \vn \cdot \vr/c} \left[ \frac{ \vn...
...t\} \dI{t'}\left\{ e^{i\omega \left(t' -\vn\cdot \vr_0(t')/c\right)}\right\}dt'$    
  $\displaystyle = \frac{q}{2\pi c R}e^{i\omega \vn \cdot \vr/c} \left[ \frac{ \vn...
...pa(t')} e^{i\omega \left( t' -\vn\cdot \vr_0(t')/c\right)}\right]_{T_1'}^{T_2'}$    
  $\displaystyle \hspace{20mm}-\frac{q}{2\pi c R}e^{i\omega \vn \cdot \vr/c} \int_...
...ght)} \dI{t'}\left\{ {i\omega \left(t' -\vn\cdot \vr_0(t')/c\right)}\right\}dt'$    
  $\displaystyle = \frac{q}{2\pi c R}e^{i\omega \vn\cdot \vr/c} \left[ \frac{ \vn ...
...bm{\beta}(t')\right)e^{i\omega \left(t'-\vn \cdot \vr(t')/c\right)} \right\}dt'$    

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp