[
Next 6]
[
Up: 5]
[
Previous: 5]
Subsections
四元ポテンシャルを
![$\displaystyle A^\mu = \left( \phi, \vA\right) =\left( \phi, A^1,A^2,A^3\right)$](Report09-img115.png) |
(21) |
で定義する。次のように定義される二回のテンソルの全ての成分を求めよ。
![$\displaystyle F_{\mu\nu} = \partial_\mu A_\nu -\partial_\nu A_\mu$](Report09-img116.png) |
(22) |
但し、メトリックは
![$\displaystyle \eta^{\mu\nu} = \begin{pmatrix}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}$](Report09-img117.png) |
(23) |
とする。
![$\displaystyle A_\mu = \eta_{\mu\nu} A^\nu = \left( -\phi, \vA \right) =\left( -\phi, A_1,A_2,A_3 \right)\, ; \quad A^i = A_i$](Report09-img118.png) |
(24) |
- time-time component
![$\displaystyle F_{00} = \partial _0 A_0 -\partial _0 A_0 = 0$](Report09-img119.png) |
(25) |
- time-space component
![$\displaystyle F_{0i} = \partial _0 A_i -\partial _i A_0 =\del{A_i}{(ct)} + \del{\phi}{x^i} =\left( \Nabla_i \phi +\frac{1}{c}\del{A_i}{t} \right) =-E_i$](Report09-img120.png) |
(26) |
![$\displaystyle F_{i0} = \partial _i A_0 -\partial _0 A_i = -F_{0i}$](Report09-img121.png) |
(27) |
- space-space component
![$\displaystyle F_{ii} = 0$](Report09-img122.png) |
(28) |
as![$\displaystyle \quad i\ne j$](Report09-img124.png) |
(29) |
![% latex2html id marker 2056
$\displaystyle \therefore\, F_{\mu\nu} = \begin{pmat...
... & \phantom{-}B_1 \\ -E_3 & \phantom{-}B_2 & -B_1 & \phantom{-}0 \end{pmatrix}$](Report09-img125.png) |
(30) |
著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp