Subsections

7-3

Show

$\displaystyle \bm{\epsilon}_{+}\cdot \bm{\epsilon}_{+}^* =1,\quad \bm{\epsilon}...
...silon}_{+}^* =0,\quad \vn \times \bm{\epsilon}_{-}^* =-i \bm{\epsilon}_{-}^*\,.$ (48)

7-3解答

$\displaystyle \bm{\epsilon}_{+}\cdot \bm{\epsilon}_{+}^*$ $\displaystyle = \frac{1}{2} \left(\bm{\epsilon}_1+i\bm{\epsilon}_2\right) \cdot \left(\bm{\epsilon}_1-i\bm{\epsilon}_2\right) =\frac{1}{2}\cdot 2 = 1$    
$\displaystyle \bm{\epsilon}_{-}\cdot \bm{\epsilon}_{-}^*$ $\displaystyle = \frac{1}{2} \left(\bm{\epsilon}_1-i\bm{\epsilon}_2\right) \cdot \left(\bm{\epsilon}_1+i\bm{\epsilon}_2\right) =\frac{1}{2}\cdot 2 = 1$    
$\displaystyle \vn \times \bm{\epsilon}_{+}^*$ $\displaystyle = \frac{1}{\sqrt{2}} \vn\times \left( \bm{\epsilon}_1-i\bm{\epsil...
...i}{\sqrt{2}}\left(\bm{\epsilon}_1-i\bm{\epsilon}_2\right) =i\bm{\epsilon}_{+}^*$    
$\displaystyle \bm{\epsilon}_{+}\cdot \bm{\epsilon}_{-}^*$ $\displaystyle = \frac{1}{2} \left(\bm{\epsilon}_1+i\bm{\epsilon}_2\right) \cdot \left(\bm{\epsilon}_1+i\bm{\epsilon}_2\right) = 0$    
$\displaystyle \bm{\epsilon}_{-}\cdot \bm{\epsilon}_{+}^*$ $\displaystyle = \frac{1}{2} \left(\bm{\epsilon}_1-i\bm{\epsilon}_2\right) \cdot \left(\bm{\epsilon}_1-i\bm{\epsilon}_2\right) = 0$    
$\displaystyle \vn \times \bm{\epsilon}_{-}^*$ $\displaystyle = \frac{1}{\sqrt{2}} \vn\times \left( \bm{\epsilon}_1+i\bm{\epsil...
...}{\sqrt{2}}\left(\bm{\epsilon}_1+i\bm{\epsilon}_2\right) =-i\bm{\epsilon}_{-}^*$    

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp