Subsections

6-2

Bessel Function: $ J_{{n}}(z)$が次の微分方程式を満たすことを示せ。

$\displaystyle \dII{z}y_{n}(z) +\frac{1}{z}\dI{z}y_{n}(z) +\left(1-\frac{n^2}{z^2}\right)y_{n}(z) =0$ (42)

6-2解答

$\displaystyle \dII{z}J_{{n}}(z)$ $\displaystyle = \dI{z}\left(J_{{n-1}}(z)-J_{{n+1}}(z)\right) = \frac{1}{4} \lef...
...}(z) \right) =\frac{1}{4} \left( J_{{n-2}}(z)-2J_{{n}}(z) +J_{{n+2}}(z) \right)$ (43)

$\displaystyle \frac{1}{z}\dI{z}J_{{n}}(z)$ $\displaystyle = \frac{1}{2z} \left(J_{{n-1}}(z)-J_{{n+1}}(z)\right) = \frac{1}{...
...- \frac{1}{2z} \frac{z}{2\left(n+1\right)} \left(J_{{n}}(z)+J_{{n+2}}(z)\right)$    
  $\displaystyle \frac{1}{4\left(n^2-1\right)} \left[ \left(n+1\right)J_{{n-2}}(z) +2J_{{n}}(z) -\left(n-1\right)J_{{n+2}}(z) \right]$ (44)

$\displaystyle J_{{n}}(z)$ $\displaystyle = \frac{z}{2n} \left(J_{{n-1}}(z)+J_{{n+1}}(z)\right) = \frac{z}{...
...) +\frac{z}{2n}\frac{z}{2\left(n+1\right)} \left(J_{{n}}(z)+J_{{n+2}}(z)\right)$    
  $\displaystyle =\frac{z^2}{4n\left(n^2-1\right)} \left[ \left(n+1\right)J_{{n-2}...
...left(n-1\right)J_{{n+2}}(z) \right] + \frac{z^2}{2\left(n^2-1\right)}J_{{n}}(z)$    
  $\displaystyle \quad \Longrightarrow \quad \left(1-\frac{z^2}{2\left(n^2-1\right...
...ht)} \left[ \left(n+1\right)J_{{n-2}}(z) + \left(n-1\right)J_{{n+2}}(z) \right]$    
  $\displaystyle \quad \Longrightarrow \quad J_{{n}}(z) =\frac{z^2}{2n\left\{2\lef...
...}} \left\{ \left(n+1\right)J_{{n-2}}(z) + \left(n-1\right)J_{{n+2}}(z) \right\}$ (45)

Eq.(43),(44),(45)をEq.(42)に代入すると、

  $\displaystyle \left[ \frac{1}{4} +\frac{1}{4\left(n-1\right)} \right]J_{{n-2}}(...
...frac{1}{2\left(n^2-1\right)} +\left(1-\frac{n^2}{z^2}\right) \right] J_{{n}}(z)$    
  $\displaystyle = \left[ \frac{1}{4} +\frac{1}{4\left(n-1\right)} -\frac{n}{4\lef...
...\frac{1}{4\left(n+1\right)} -\frac{n}{4\left(n+1\right)} \right]J_{{n+2}}(z) =0$    

となり、確かに満たしていることが分かる。

別解

$\displaystyle 2\dI{z}J_{{n}}(z)
=
J_{{n-1}}(z)-J_{{n+1}}(z)
=\frac{2n}{z}J_{{n}}(z)
-J_{{n+1}}(z)-J_{{n+1}}(z)
=\frac{2n}{z}J_{{n}}(z) -2J_{{n}}(z)
$

$\displaystyle \Longrightarrow
\quad
\left(
-\dI{z}
+
\frac{n}{z}
\right)J_{{n}}(z)
=J_{{n+1}}(z)$   :上昇演算子$\displaystyle $

$\displaystyle 2\dI{z}J_{{n}}(z)
=
J_{{n-1}}(z)-J_{{n+1}}(z)
=J_{{n-1}}(z)
-\frac{2n}{z}J_{{n}}(z)+J_{{n-1}}(z)
=-\frac{2n}{z}J_{{n}}(z)+2J_{{n+1}}(z)
$

$\displaystyle \Longrightarrow
\quad
\left(
\dI{z}
+
\frac{n}{z}
\right)J_{{n}}(z)
=J_{{n-1}}(z)$   :下降演算子$\displaystyle $

% latex2html id marker 3336
$\displaystyle \therefore\quad
\left(\dI{z}+\frac{n+...
...t) \left(-\dI{z}+\frac{n}{z}\right)J_{{n}}(z)
=J_{{n}}(z)
\,
\longrightarrow
\,$   Eq.(42)$\displaystyle $

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp