Subsections

1-1

次の式を示せ。但し $ \delta\equiv \delta_2-\delta_1$

$\displaystyle \begin{pmatrix}\sin\delta_2 & \cos\delta_2 \\  -\sin\delta_1 & -\...
...\end{pmatrix} = \begin{pmatrix}1 & -\cos\delta \\  -\cos\delta &1 \end{pmatrix}$ (1)

1-1解答

$\displaystyle \begin{pmatrix}\sin\delta_2 & \cos\delta_2 \\ -\sin\delta_1 & -\c...
...trix}\sin\delta_2 & -\sin\delta_2 \\ \cos\delta_2 & -\cos\delta_1 \end{pmatrix}$ $\displaystyle = \begin{pmatrix}\sin^2\delta_2+\cos^2\delta_2 & -\left( \sin\del...
...+ \cos\delta_1\cos\delta_2\right) & \sin^2\delta_1+\cos^2\delta_1 \end{pmatrix}$    
  $\displaystyle = \begin{pmatrix}1 & -\cos\left(\delta_2-\delta_1\right) \\ -\cos\left(\delta_2-\delta_1\right) &1 \end{pmatrix}$    
  $\displaystyle = \begin{pmatrix}1 & -\cos\delta \\ -\cos\delta &1 \end{pmatrix} \begin{pmatrix}1 & -\cos\delta \\ -\cos\delta &1 \end{pmatrix}$    

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp