Subsections

2-a

以下の関係式を示せ。

$\displaystyle \vn\cdot\bm{\beta} = \beta \cos\theta, \quad \vn\cdot \dot{\bm{\b...
...ta\cos i\right), \quad \dot{\bm{\beta}}\cdot \bm{\beta} =\dot{\beta}\beta\cos i$ (13)

$\displaystyle \kappa g^2$ $\displaystyle = \dot{\beta}^2\Bigg\{ \frac{1}{\kappa^3} +\frac{2}{\kappa^4}\beta \left(\cos i \, \sin i \,\sin\theta \,\cos\phi +\cos^2 i\, \cos\theta\right)$    
  $\displaystyle \hspace{30mm} -\frac{1}{\kappa^5}\gamma^{-2}\left( \sin^2 i \,\si...
...\,\sin\theta\, \cos\theta \,\cos\phi + \cos^2 i\, \cos^2 \theta \right\} \Bigg)$ (14)

$\displaystyle I_{n+1}$ $\displaystyle \equiv \int_{-1}^{+1} \frac{d\mu}{\left(1-\beta\mu\right)^{n+1}} ...
...\left(1+\beta\right)^n-\left(1-\beta\right)^n}{n\beta \left(1-\beta^2\right)^n}$ (15)
$\displaystyle J_{n+1}$ $\displaystyle \equiv \int_{-1}^{+1} \frac{\mu d\mu}{\left(1-\beta\mu\right)^{n+1}} = \frac{1}{n}\di{I_n}{\beta}$ (16)
$\displaystyle K_{n+1}$ $\displaystyle \equiv \int_{-1}^{+1} \frac{\mu^2d\mu}{\left(1-\beta\mu\right)^{n+1}} = \frac{1}{n}\di{J_n}{\beta}$ (17)

2-a解答

図より、

$\displaystyle \bm{\beta}=\beta\left(\,0,\,0,\,1\right),\quad
\dot{\bm{\beta}} = \dot{\beta}\left( \,\sin i,\, 0,\, \cos i\right)
$

であり、又 $ \vv=c\bm{\beta}$であるから、

$\displaystyle \vn \cdot \bm{\beta}$ $\displaystyle = \beta \cos\theta$    
$\displaystyle \vn \cdot \dot{\bm{\beta}}$ $\displaystyle = \dot{\beta} \left(\sin\theta\,\cos\phi\,\sin i + \cos\theta\, \cos i\right)$    
$\displaystyle \dot{\bm{\beta}}\cdot \bm{\beta}$ $\displaystyle = \dot{\beta}\beta \cos i$    

を得る。この関係より

$\displaystyle \kappa g^2$ $\displaystyle = \kappa \frac{1}{\kappa^6} \left[ \vn \times \left\{\left(\vn -\...
...m{\beta}\right) - \left(1-\vn \cdot \bm{\beta}\right)\dot{\bm{\beta}}\right\}^2$    
  $\displaystyle =\frac{1}{\kappa^5} \left[ \left(\vn \cdot \dot{\bm{\beta}}\right...
...left(\vn \cdot \dot{\bm{\beta}} -\bm{\beta}\cdot \dot{\bm{\beta}}\right)\right]$    
  $\displaystyle = \frac{1}{\kappa^5} \Bigg[ \dot{\beta}^2 \left(\sin^2\theta\,\co...
...os\theta\, \sin i\, \cos i \, \cos\phi\right) \left(\beta^2 -1 + 2\kappa\right)$    
  $\displaystyle \hspace{30mm} + \kappa^2 \dot{\beta}^2 -2 \dot{\beta} \left(\sin\...
...sin\theta\,\cos\phi \, \sin i + \cos\theta\, \cos i -\beta \cos i\right) \Bigg]$    
  $\displaystyle = \frac{\dot{\beta}^2}{\kappa^3} + \frac{2\dot{\beta}^2\beta}{\kappa^4} \left( \cos i\,\sin\theta\,\cos\phi\,\sin i + \cos\theta \,\cos^2 i \right)$    
  $\displaystyle \hspace{30mm} + \dot{\beta}^2 \frac{\left(\beta^2-1\right)}{\kapp...
... \cos i\, \sin\theta\, \cos\theta\, \cos\phi + \cos^2 i \,\cos^2 \theta \right)$    
  $\displaystyle = \dot{\beta}^2\Bigg\{ \frac{1}{\kappa^3} +\frac{2}{\kappa^4}\beta \left(\cos i \, \sin i \,\sin\theta \,\cos\phi +\cos^2 i\, \cos\theta\right)$    
  $\displaystyle \hspace{30mm} -\frac{1}{\kappa^5}\gamma^{-2} \left( \sin^2 i\, \s...
... i \, \sin\theta\,\cos\theta\,\cos\phi + \cos^2i \, \cos^2\theta\right) \Bigg\}$    

を得る。次にEq.(15),(16),(17)は

$\displaystyle I_{n+1}$ $\displaystyle = \int_{-1}^{+1} \frac{d\mu}{\left(1-\beta\mu\right)^{n+1}} ; \qq...
...cc} \mu & -1 & \to & +1 \\ \hline x & 1+\beta\mu & \to & 1-\beta\mu \end{array}$    
  $\displaystyle = - \int_{1+\beta}^{1-\beta} \frac{x^{-(n+1)}}{\beta} dx = \frac{...
...left(1+\beta\right)^n -\left(1-\beta\right)^n}{n\beta \left(1-\beta^2\right)^n}$    
$\displaystyle \di{I_n}{\beta}$ % latex2html id marker 1057
$\displaystyle = \dI{\beta} \int_{-1}^{+1} \frac{d\m...
...eta \mu\right)^{n+1}},\quad \therefore \, J_{n+1} = \frac{1}{n} \di{I_n}{\beta}$    
$\displaystyle \di{J_n}{\beta}$ % latex2html id marker 1059
$\displaystyle = \dI{\beta} \int_{-1}^{+1} \frac{\mu...
...ta \mu\right)^{n+1}}, \quad \therefore \, K_{n+1} = \frac{1}{n} \di{J_n}{\beta}$    

となるので、諸関係式が導けた。 著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp