Subsections

2-1

上記の電場が真空中のMaxwell方程式を満たすことを示せ。

2-1解答

$\displaystyle \Nabla \cdot \vE$ $\displaystyle = \begin{pmatrix}\partial_{x}\\ \partial_{y}\\ \partial_{z} \end{...
...0 \end{pmatrix} =\partial_{x} \left( E_0 \cos\left(\omega t-kz\right)\right) =0$    
$\displaystyle \Nabla \times \vE$ $\displaystyle = \begin{pmatrix}\partial_{x}\\ \partial_{y}\\ \partial_{z} \end{...
...ix} = \begin{pmatrix}0 \\ E_0k \sin \left(\omega t-kz\right) \\ 0 \end{pmatrix}$    
$\displaystyle -\frac{1}{c}\del{\vB}{t}$ $\displaystyle =-\frac{1}{c}\deL{t} \begin{pmatrix}B_x \\ B_y \\ B_z \end{pmatri...
...t(\omega t-kz\right) \\ 0 \end{pmatrix}; \quad \because\, \omega = ck,\,E_0=B_0$    
$\displaystyle \Nabla \times \vB$ $\displaystyle = \begin{pmatrix}\partial_{x}\\ \partial_{y}\\ \partial_{z} \end{...
...} =\begin{pmatrix}-B_0 k \sin \left(\omega t -kz\right) \\ 0 \\ 0 \end{pmatrix}$    
$\displaystyle \frac{1}{c}\del{\vE}{t}$ $\displaystyle =\frac{1}{c}\partial_{t} \begin{pmatrix}E_x \\ E_y \\ E_z \end{pm...
...mega t-kz\right)\\ 0 \\ 0 \end{pmatrix}; \quad \because\, \omega = ck,\,E_0=B_0$    

確かに満たしている。

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp