Subsections

3-3

$\displaystyle \Nabla \cdot \left(\vA \times \vB \right) =\vB \cdot \left(\Nabla \times \vA\right) -\vA \cdot \left(\Nabla \times \vB\right)$ (8)

3-3解答

$\displaystyle \Nabla \cdot \left(\vA \times \vB \right)$ $\displaystyle = \left( \ve_i \partial_i\right) \cdot \left[ \left( A_j \ve_j\ri...
...partial_i \left(A_j B_k\right) =\vepsilon_{ijk} \partial_i \left(A_j B_k\right)$    
  $\displaystyle =\vepsilon_{ijk} B_k \partial_i A_j + \vepsilon_{ijk} A_j \partia...
...\left( A_j \ve_j\right)\cdot \left( \ve_j \vepsilon_{ikj} \partial_i B_k\right)$    
  $\displaystyle =\vB \cdot \left(\Nabla \times \vA\right) -\vA \cdot \left(\Nabla \times \vB\right)$    

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp