Subsections

1 微分方程式

Airy Functionは以下の微分方程式を満たす。但し $ \lim_{x\to\infty}\sin x \to 0$

$\displaystyle \Phi''(z) = z\Phi(z) .$ (49)

1 証明

$\displaystyle \dI{z}
\Phi(z)
=
\frac{1}{\sqrt{\pi}}
\int_0^\infty
\dI{z}
\cos
\...
...ac{1}{\sqrt{\pi}}
\int_0^\infty
\sin\left(\frac{\xi^3}{3}+\xi z\right)\xi d\xi
$

$\displaystyle \dII{z} \Phi(z)$ $\displaystyle = -\frac{1}{\sqrt{\pi}} \int_0^\infty \cos\left( \frac{\xi^3}{3} ...
...vert ccc} \xi & 0 & \to & \infty \\ \hline \zeta & 0 & \to & \infty \end{array}$    
  $\displaystyle = -\frac{1}{\sqrt{\pi}} \left[ \int_0^\infty \cos\xi d\xi -z \int...
...\right]_0^\infty +z \int_0^\infty \cos\left( \frac{\xi^3}{3}+\xi z \right) d\xi$    
  $\displaystyle = z\Phi(z)$    

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp