Subsections

2

Modified Bessel Functionは以下の微分方程式を満たす:

$\displaystyle K''_{\nu}(z) + \frac{1}{z} K'_{\nu}(z) - \left( 1+\frac{\nu^2}{z^2} \right) = 0 .$ (47)

1 証明

Eq.(44),(45)より、

$\displaystyle -\left(
\frac{2\nu}{z}
K_{\nu}(z)
+2K_{'}(z){\nu}
\right)
=2K_{\n...
...grightarrow
\quad
-\left(
\dI{z}+\frac{\nu}{z}
\right)
K_{\nu}(z)
=K_{\nu-1}(z)$   : 下降演算子$\displaystyle $

$\displaystyle \frac{2\nu}{z}
K_{\nu}(z)
-2K_{'}(z){\nu}
=2K_{\nu+1}(z)
\quad
\Longrightarrow
\quad
-\left(
\dI{z}-\frac{\nu}{z}
\right)
K_{\nu}(z)
=K_{\nu+1}(z)$   : 上昇演算子$\displaystyle $

% latex2html id marker 3468
$\displaystyle \therefore
\quad
\left(
\dI{z}-\frac{...
...ft(
\dI{z}
+
\frac{\nu}{z}
\right)
K_{\nu}(z)
=K_{\nu}(z)
\,
\longrightarrow
\,$   Eq.(47)$\displaystyle $

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp