1 座標・表記

図: Geometry for caluculation of the radiation field at $ R\rt$ from the position of the radiating particle at the retarted time ( $ t'=t_{{\rm ret}}$).
\includegraphics[width=14.00truecm,scale=1.1]{jyoukyou.eps}

座標、表記は以下の通り:

$\displaystyle t'$ $\displaystyle = t_{{\rm ret}}$ (1)
$\displaystyle {\bf R}(t')$ $\displaystyle = \vr - \vr_0(t')$ (2)
$\displaystyle R(t')$ $\displaystyle = \left\vert {\bf R}(t')\right\vert$ (3)
$\displaystyle t'$ $\displaystyle = t - \frac{R(t')}{c}$ (4)
$\displaystyle \vn(t')$ $\displaystyle = \frac{{\bf R}(t')}{R(t')}$ (5)
$\displaystyle \bm{\beta}(t')$ $\displaystyle =\frac{\vv(t')}{c}$ (6)
$\displaystyle \gamma$ $\displaystyle = \frac{1}{\sqrt{1-\bm{\beta}^2}}$ (7)
$\displaystyle \kappa(t')$ $\displaystyle = 1-\vn(t')\cdot \bm{\beta}(t')$ (8)

$\displaystyle \del{f(t')}{t'} \equiv \dot{f}(t'),\quad \del{{\bf f}(t')}{t'} \equiv \dot{{\bf f}}(t') .$ (9)

又、

$\displaystyle R(t')= {\bf R}(t')\cdot \vn(t') = \left( \vr-\vr_0(t')\right)\cdot \vn(t')= \vn(t') \cdot \vr - \vn(t')\cdot \vr_0(t')$    

% latex2html id marker 3220
$\displaystyle R^2(t') = {\bf R}(t')\cdot{\bf R}(t')...
...e \, dt' = dt -\frac{1}{c}\di{R(t')}{t'}dt' =dt - \vn\cdot \dot{{\bf R}}(t')dt'$    

であるから、以下を得る:

% latex2html id marker 3222
$\displaystyle \therefore \quad R(t') = \vn(t')\cdot...
...appa(t')dt'; \quad t = \frac{\vr\cdot\vn}{c} +t' -\frac{\vn\cdot\vr_0(t')}{c} .$ (10)

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp