Subsections

2 球面調和関数の可視化

中心力の問題では波動関数の角度依存成分が、 重力波では密度、圧力の摂動量、流体摂動の変位速度が球面調和関数に比例する。 そこで $ \vert{Y_l}^m(\theta,\phi)\vert^2,\vert{Y_l}^m(\theta,\phi)\vert$ $ \Re[{{Y_l}^m}(\theta,\phi)]$を可視化してみる。

$ \vert{Y_l}^m(\theta,\phi)\vert^2$は原点から球面までの距離が球面調和関数の絶対値の二乗を表し、 $ \vert{Y_l}^m(\theta,\phi)\vert,\Re[{{Y_l}^m}(\theta,\phi)]$は球面上の濃淡(白の場所で値が大きく、黒の場所では値が小さい)で表している。

1 原点からの距離が球面調和関数の絶対値の二乗を表すプロット

\includegraphics[width=6.00truecm,scale=1.1]{lenghtplotl0m0.eps}
\includegraphics[height=6.00truecm,scale=1.1]{lenghtplotl1m0.eps} \includegraphics[width=6.00truecm,scale=1.1]{lenghtplotl1m1.eps}
\includegraphics[width=2.50truecm,scale=1.1]{lenghtplotl2m0.eps} \includegraphics[height=6.00truecm,scale=1.1]{lenghtplotl2m1.eps} \includegraphics[height=4.50truecm,scale=1.1]{lenghtplotl2m2.eps}

\includegraphics[width=5.00truecm,scale=1.1]{lenghtplotl3m1.eps} \includegraphics[width=6.00truecm,scale=1.1]{lenghtplotl3m2.eps}
\includegraphics[width=4.50truecm,scale=1.1]{lenghtplotl5m2.eps} \includegraphics[height=6.00truecm,scale=1.1]{lenghtplotl5m3.eps} \includegraphics[height=5.50truecm,scale=1.1]{lenghtplotl5m4.eps}
\includegraphics[width=4.50truecm,scale=1.1]{lenghtplotl7m3.eps} \includegraphics[height=6.00truecm,scale=1.1]{lenghtplotl7m4.eps} \includegraphics[height=5.50truecm,scale=1.1]{lenghtplotl7m5.eps}

2 球面調和関数の絶対値を球面上の濃淡でプロット

\includegraphics[width=6.5truecm,scale=1.1]{plotl0m0.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl1m0.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl1m1.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl2m0.eps} \includegraphics[width=6.50truecm,scale=1.1]{plotl2m1.eps} \includegraphics[width=6.50truecm,scale=1.1]{plotl2m2.eps}
\includegraphics[width=6.5truecm,scale=1.1]{plotl3m1.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl3m2.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl5m2.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl5m3.eps} \includegraphics[width=6.50truecm,scale=1.1]{plotl5m4.eps} \includegraphics[width=6.50truecm,scale=1.1]{plotl7m3.eps}
\includegraphics[width=6.5truecm,scale=1.1]{plotl7m4.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl7m5.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl10m0.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl10m5.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl10m10.eps} \includegraphics[width=6.5truecm,scale=1.1]{plotl20m10.eps}

3 球面調和関数の実部の値を値を球面上の濃淡でプロット

\includegraphics[width=6.5truecm,scale=1.1]{replotl0m0.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl1m0.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl1m1.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl2m0.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl2m1.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl2m2.eps}
\includegraphics[width=6.5truecm,scale=1.1]{replotl3m0.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl3m1.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl3m2.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl3m3.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl5m0.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl5m1.eps}
\includegraphics[width=6.5truecm,scale=1.1]{replotl5m2.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl5m3.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl5m4.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl5m5.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl10m0.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl10m5.eps}
\includegraphics[width=6.5truecm,scale=1.1]{replotl10m10.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl20m0.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl10m5.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl20m15.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl20m17.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl20m20.eps}
\includegraphics[width=6.5truecm,scale=1.1]{replotl30m15.eps} \includegraphics[width=6.5truecm,scale=1.1]{replotl50m25.eps}

fat-cat 平成17年2月26日