最高エネルギー宇宙線でみる宇宙

Keitaro Fujita ICRR, University of Tokyo

「宇宙線で繋ぐ文明・地球環境・太陽系・銀河」研究会

Indirect Cosmic Ray Measurement

- Cosmic ray flux
 - Power law feature
 - **Flux(E)** $\propto E^{-\gamma}$
 - Spectral features
 - "Knee" @ E ~ 10^{15.6} eV
 - "2nd Knee" @ E ~ 10¹⁷ eV
 - "Ankle" @ E ~ 10^{18.7} eV
 - "Cutoff" @ E ~ 10^{19.8} eV
- UHECRs
 - $E > 10^{18} \text{ eV}$
 - Event rate: 1 particle/km²/year
 - extra-galactic origin

3

Indirect Cosmic Ray Measurement

- We can investigate the cosmic ray properties by detecting the EAS particles or photons instead of direct measurements
- Particle detection
 - Scintillation detector
 - Water Cherenkov detector
 - Muon detector
- Photon detection
 - Imaging atmospheric Cherenkov telescopes (IACTs)
 - Non-Imaging Cherenkov detector array
 - Fluorescence Detector
- Radio detection
- $E \sim 10^{12}$ eV: Air shower array, IACT
- $E \sim 10^{15}$ eV: Air shower array, Cherenkov, Radio
- $E \sim 10^{18}$ eV: Air shower array, FD, or both

Oct. 25, 2022

How to measure CR energy

- Air shower phenomena
 - Lateral spread:
 - Perpendicular to an arrival direction
 - Particle density \propto CR energy
 - \rightarrow sampling by Air Shower Array
 - Shower profile:
 - Cascade continues up to limitation of particle production
 - Atmosphere act as calorimeter
 - Light flux

 energy deposition
 by EAS charged particles
 - \rightarrow detection by Fluorescence Detector

How to measure CR charge

Direct measurement

https://calet.jp/wp-content/uploads/2022/07/COSPAR22_akaike_pub.pdf

- Indirect measurement
 - mass sensitive parameter
 - depth of shower maximum, X_{max}
 - μ component

https://ams02.space/advances-data-analysis/improvements-charge-resolution

800

900

700

Slant Depth [g/cm²]

1000 1100

Oct. 25, 2022

1000

600 700 800 900

Slant Depth [g/cm²]

How to measure CR charge

Direct measurement

https://calet.jp/wp-content/uploads/2022/07/COSPAR22_akaike_pub.pdf

- Indirect measurement
 - mass sensitive parameter
 - depth of shower maximum, X_{max}
 - μ component
 (large uncertainty...)

https://ams02.space/advances-data-analysis/improvements-charge-resolution

UHECR detection

Pierre Auger Observatory

「宇宙線で繋ぐ文明・地球環境・太陽系・銀河」研究会

「宇宙線で繋ぐ文明・地球環境・太陽系・銀河」研究会

Telescope Array Detectors

TA Low energy Extension(TALE)

Oct. 25, 2022

• Low energy target: E > 10¹⁶ eV

- Same concept as TA detector
 - 10 Fluorescence Telescopes
 - 80 Surface Detectors, 20 km²

SD since Nov. 2017

• Operation: FD since Sep. 2013

60F elevation angle [degree] 20 **10**[⊢] 0 100 180 200 220 120 160 140 azimuth angle [degree] -2

「宇宙線で繋ぐ文明・地球環境・太陽系・銀河」研究会

Energy Spectrum

New feature in energy spectrum

Auger found a new feature in $10^{19} - 10^{19.5}$ eV range

- 2-step softening after the ankle Combining HiRes, TA SD, and TA FD, a two-step softening exists in the northern hemisphere data.
- 5.3σ deficit above 10^{19.25} eV from an assumption of no breaks before the high-energy steepening

Parameter	Auger	TA
γ_1	3.29 ± 0.02	3.23 ± 0.01
γ_2	2.51 ± 0.03	2.63 ± 0.02
γ_3	3.05 ± 0.05	2.92 ± 0.06
γ_4	5.1 ± 0.3	5.0 ± 0.4
$E_{\rm ankle}/{\rm EeV}$	5.0 ± 0.1	5.4 ± 0.1
$E_{\rm instep}/{\rm EeV}$	13 ± 1	18 ± 1
$E_{\rm cut}/{\rm EeV}$	46 ± 3	71 ± 3

Y. Tsunesada et al. (Auger+TA Spectrum WG) PoS ICRC2021 (2021) 337

Auger + TA energy spectrum

Oct. 25, 2022

Auger + TA energy spectrum Energy ±4.5% rescaled

Oct. 25, 2022

Common declination band spectrum Energy ±4.5% rescaled

Declination dependence

Auger energy spectrum All energy range

Oct. 25, 2022

TA energy spectrum All energy range

Auger + TA energy spectrum All energy range

Anisotropy

TA & PAO see no excess in the direction of Virgo.

「宇宙線で繋ぐ文明・地球環境・太陽系・銀河」研究会

New excess of events with E $\geq 10^{19.5} \text{ eV}^{-24}$

- 685 events with $E \ge 10^{19.5} \text{ eV}$ (14yrs TA SD data)
- Maximum local significance: 3.8σ at (19.0°, 35.1°)

Observed: 66 events

Expected from isotropy: 39 events

- post trial : 3.2σ

Large Scale Anisotropy (E>8EeV)

25

Mass Composition

Auger/TA X_{max} measurement

TALE X_{max} measurement

Measured reconstructed (X_{max})/σ(X_{max}) vs. shower energy
 Nov. 2017 - May. 2022 (4 yrs, 1880 hours)

 $D_{10}^{before} = 16 \pm 5 \text{ g/cm}^2/\text{decade}$ $D_{10}^{after} = 97 \pm 4 \text{ g/cm}^2/\text{decade}$ $\log_{10}(E_{break}/\text{eV}) = 17.1$

MC elongation rate [g/cm²/decade]

	proton	iron
D_{10}^{MC}	68 ± 2	62 ± 2

Suggest light to heavy below 10¹⁷ eV, then getting lighter above

Mass Composition

<In A> vs log(E/eV)

