宇宙線イメージング考古学

森島邦博 名古屋大学

宇宙線ミューオンイメージング

幅広いエネルギーの宇宙線 ミューオンがあらゆる方向から 飛来

観測対象を透過するミューオン を三次元飛跡検出器で検出

1TeVを超えるミューオンは1kmで さえも透過

多彩な分野への貢献

R3学術変革領域研究(B) 「素粒子現象から巨大構造物までを透視するマルチスケールミューオンイメージングの創成」 領域代表:森島

計画研究A02 原子核乾板によるピラミッド・火山の 三次元ミューオンイメージングと対象の多彩化

宇宙線を検出する写真フィルム「原子核乾板」

スキャンピラミッド ScanPyramids (2015年~)

名古屋大学独自の 素粒子計測技術「原子核乾板」

2015:屈折ピラミッド 2015-2019:クフ王のピラミッド **2022-:カフラー王のピラミッド**

©ScanPytamid

国際共同研究 エジプト考古省・カイロ大学が運営 参加国:日本、エジプト、フランス 参加研究機関:名古屋大学、KEK、CEA

ピラミッド内部の新空間の発見(2017年) K. Morishima et. al., Nature 552, 386 (2017) シミュレーションと観測データの間 19世紀以降初めての未知構造の発見 に有意な差を検出 シミュレーション画像 観測結果 多い North North 90 degree ミューオン East フラックス East (飛来頻度) yinos ginos 少ない

ピラミッド内部の新空間の発見(2017年) K. Morishima et. al., Nature 552, 386 (2017)

19世紀以降初めての未知構造の発見

宇宙線イメージング考古学

・非破壊イメージングによる未知構造の検知
・遺跡に優しい最小限・効率的な発掘を可能にする
・文化遺産保護にも貢献

エジプト(ピラミッド)、マヤ(神殿)、イタリア(地下遺跡)をターゲットに展開・発展

下降通路およびアルマムーンの通路の7地点

大回廊の9地点

スキャンピラミッドの現状

1多地点・多方向からの同時観測による 三次元空間形状の解明

②地下の間からのピラミッド全体の観測

①-1巨大空間

①-2.北面背後の 通路状空間

● 2019年度の

観測位置

スキャンピラミッドの現状

大回廊の9地点

多地点・多方向からの同時観測による
 三次元空間形状の解明
 地下の間からのピラミッド全体の観測

②地下の間

①-1巨大空間

①-2.北面背後の 通路状空間

▶ 7 地点からの観測データによる三次元形状推定
 → 論文アクセプト(Nature Comm.)、近日公表

下降通路

アルマムーンの通路

・空間の位置を特定により、切妻構造背後の空間の位置を10cmの精度で推定することに成功・透過型宇宙線イメージングにおける最高精度

・空間の位置を特定により、切妻構造背後の空間の位置を10cmの精度で推定することに成功・透過型宇宙線イメージングにおける最高精度

宇宙線イメージングにより発見した新空間の発掘調査へ

スキャンピラミッドの現状

2.25m²検出器

 多地点・多方向からの同時観測による 三次元空間形状の解明
 地下の間からのピラミッド全体の観測

①-2.北面背後の 通路状空間

女王の間の周辺とより深い領域の探査

45日間相当のシミュレーション

45日間の観測データ

ンピラミッドの現状 ・) 多地点・多方向からの同時観測による こ次元空間形状の解明 ・) 地下の間からのピラミッド全体の観測 ①11巨大空間

①-2.北面背後の 通路状空間

②地下の間

女王の間の周辺とより深い領域の探査

カフラー王のピラミッド

カフラー王のピラミッド(2022-)

カフラー王のピラミッド にもクフ王と同じような 複雑な内部構造が存在す るのではないか?

カフラー王のピラミッド

カフラー王のピラミッド(2022-)

Alvarezらの観測(1970)では、未知の空間は確認されていない

カフラー王のピラミッド(2022-)

Alvarezらが可視化していなかった範囲に可視化範囲を拡張

Alvarezらがスパークチェンバーを 観測した場所に原子核乾板を設置 2022年10月13日

Belzoni Chamber 14m

クフ王のピラミッドに 設置した検出器

Belzoni Chamber

クフ王のピラミッドに 設置した検出器

14m

クフ王のピラミッドに 設置した検出器

クフ王のピラミッドに 設置した検出器

Alvarezらが可視化していない領域の観測 下降通路に原子核乾板を設置 2022年10月11日

今後、2~3か月ごとに原子核乾板の交換を行い、継続的に宇宙線イメージングを進める *次回は少し短めで、11月4日~15日で交換の予定

考古学遺跡調査のツールとしての 宇宙線イメージング

ホンジュラスのコパン遺跡の調査(2018~)

・マヤ遺跡に特有な重層建築構造

・神殿ピラミッド内に複数の石室墓が見つかっている ・発見した場合の**発掘へのハードルが低い**

■11号神殿ピラミッド

15代王の墓があると考えられていた領域には、王墓級の空間は検知されなかった *崩落してる可能性もある

ティカル遺跡(グアテマラ)

マヤ文明の中でも最重要遺跡の一つ
 ・コパン遺跡と同様に王墓が空洞で見つかっている

ティカル最大の4号神殿などは未発掘 王墓発見への期待

検出器の設置場所 ・地下トンネル

・遺跡の周囲

・石材は石灰岩:エジプトのピラミッドと同じ ・エジプトの大ピラミッドの1/10程度の大きさ

宇宙線イメージングの防災技術への展開

河川堤防の内部イメージング ボーリング型検出器による地下空洞探査

樹木内部診断

まとめ

・宇宙線イメージングの考古学への適用

- 非破壊イメージングによる未知構造の検知
- 遺跡に優しい最小限・効率的な発掘を可能にする
- 文化遺産保護にも貢献

ScanPyramids

- クフ王のピラミッドでは、宇宙線イメージングにより発見された空間の発掘に向けた複合調査 が進んでいる
- カフラー王のピラミッドの調査を開始
- ・その他、マヤ遺跡やナポリの地下遺跡、古墳などへも適用開始・検討中
- ・さらに別の領域では、防災技術などへも技術を展開