Section 10. Neutron star merger

10.1 Neutron star merger

10.2 Observations of gravitational wave sources

Cosmic abundances

Neutron-capture nucleosynthesis

s (slow)-process

Ba, Pb, ... Inside of stars

r (rapid)-process

Au, Pt, U, ... SN? NS merger?

Origin of r-process elements?

Some phenomena related to neutron star

Supernova

Neutron star merger

~ 1 event per 100 yr in a galaxy (R ~ 10⁻² yr-1)

~ 1 event per 10,000 yr in a galaxy (R ~ 10⁻⁴ yr-1)

NS merger => mass ejection

Top view

Side view

Sekiguchi+15, 16

M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c

General NS merger => dynamical mass ejection (< 0.1 sec) relativity => "wind" from disk (~ 1 sec)

Explosive phenomena around the neutron star

Core-collapse supernova

Moderately neutron rich Ye ~ 0.45 (n_n ~ 1.2n_p)

NS merger

Very neutron rich Ye ~ 0.10 (n_n ~ 9 n_p)

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

n_n = n_p for Ye = 0.50

Why some material are ejected? (NS has an extremely strong gravity!)

r-process in NS merger

(C) Nobuya Nishimura

Radioactive decay (Beta decay)

$$n \rightarrow p^+ + e^- + \bar{\nu_e}$$

Radioactively powered transients similar to SN (56Ni) => "kilonova"

Supernova vs NS merger

	Supernova	NS merger	
Power source	56Ni	r-process elements	
Ejecta mass	1-10 Msun	0.01 Msun	
Ejecta velocity	5,000-10,000 km/s	30,000-60,000 km/s (0.1c-0.2c)	
Kinetic energy	10 ⁵¹ erg	1-5 x 10 ⁵⁰ erg	
Composition	H, He, C, O, Ca, Fe-group	r-process elements	

Supernova and kilonova

Section 10. Neutron star merger

10.1 Neutron star merger

10.2 Observations of gravitational wave sources

How to find NS merger??

Gravitational waves!

(C) LIGO/T. Pyle

What is the expected amplitude of GW waves?

Visualization of GWs

Sensitivity of GW detectors

https://gwosc.org/O3/o3speclines/

The first GW detection (GW150914)

Merger of binary black hole

Masses in the Stellar Graveyard

Gravitational wave

"Galactic worms"

Number (1)	Name (2)	Δ <i>l</i> (deg) (3)	Δb (deg) (4)	
64	GW 175.8-2.5	13.0	4.5	
65	GW 177.3+1.4	3.0	1.0	
66	GW 192.0+8.7	2.5	3.0	
67	GW 193.8+2.7	1.0	1.5	
68	GW 195.7+4.5	5.5	6.5	
69	GW 211.5+6.9	5.0	7.5	
70	GW 213.4+1.4	2.0	1.0	
71	GW 216.6+1.3	2.5	1.0	
72	GW 220.0+3.6	3.0	5.0	
73	GW 230.8+5.2	6.5	8.5	
74	GW 239.2+7.4	4.5	6.5	
75	GW 239.9+3.4	7.5	5.5	
76	GW 243.9+2.1	1.5	2.5	
77	GW 247.9 + 4.6	3.5	8.0	

Koo+92

The first GW detection From NS merger (GW170817)

Normalized amplitude 0 2 6 500 LIGO-Hanford 100 50 500 LIGO-Livingston Frequency (Hz) 100 50 500 Virgo 100 50 -20 -30 -10 0 Time (seconds)

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

Search for electromagnetic (EM) counterpart

hscMap

背景の天の川:ESO/S.Brunier

Coulter+17, Soares-Santos+17, Valenti+17, Arcavi+17, Tanvir+17, Lipunov+17

Movie: Utsumi, MT+17, Tominaga, MT+18

EM counterpart of GW170817 @ 40 Mpc = "Kilonova"

Optical (z) near IR (H) near IR (Ks)

Mej ~ 0.05 Msun

Enough to explain the total mass of r-process elements (if R ~ 10⁻⁴ yr⁻¹ Gal⁻¹)

Supernova and kilonova

Many open issues

- Physical origin of the ejecta
 - Dynamical ejecta and disk ejecta?
- Production rate
 - Event rate? => more GW events
 - Are kilonova (mass ejection) always the same?
- Elemental abundances
 - Which elements are produced?
 - How massive elements? Fission?
 - Similar to solar abundance ratios?

GW190425: 2nd NS merger event

Total NS mass ~ 3.4 Msun

Abbott+2020

No kilonova... (d ~150 Mpc)

Diversity in neutron star masses => diversity in mass ejection

Schedule of GW observations

Summary

• NS merger

- Ejection of material by tidal disruption (+ ejection from accretion disk)
- r-process => radioactive decay => kilonova
- Observations of GW sources
 - Kilonova is observed
 - Production rate fulfills the necessary condition

• Future

- Identification of elements or abundance pattern
- Understanding the variety (production rate)
- More events with better localization