Section 9. Radiation from supernovae (II)

9.1 Timescale of supernovae9.2 Application to neutron star mergers

Light curves

1043 erg s-1

10⁴² erg s⁻¹

Type la SNe eject more ⁵⁶Ni

Heating source of supernovae

1. Radioactivity (56Ni)

Important in all the types Type Ia > Core-collapse

2. Shock heating

Important for large-radius star (Type II)

- **3. Interaction with CSM** Ekin => Eth (Type IIn)
- 4. Magnetar?
 Erot => energy loss by spin down

What determines the timescale of supernovae?

What can we learn from observations?

Opacity in supernova ejecta (Type Ia SN, $\rho = 10^{-13}$ g cm⁻³)

Pinto & Eastman 2000

Observations <=> physical quantities

E, Mej, M(56Ni), X (element)

Section 9. Radiation from supernovae (II)

9.1 Timescale of supernovae9.2 Application to neutron star mergers

Neutron star merger

NS merger => mass ejection

Top view

Side view

Sekiguchi+15, 16

M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c

r-process nucleosynthesis in NS merger

(C) Nobuya Nishimura

Supernova vs NS merger

	Supernova	NS merger
Power source	56Ni	r-process elements
Ejecta mass	1-10 Msun	0.01 Msun
Ejecta velocity	5,000-10,000 km/s	30,000-60,000 km/s (0.1c-0.2c)
Kinetic energy	10 ⁵¹ erg	1-5 x 10 ⁵⁰ erg
Composition	H, He, C, O, Ca, Fe-group	r-process elements

Radioactive decay luminosity

²¹⁶ Po

Opacity

Higher opacity by factor of 100

(Kasen+13, Tanaka & Hotokezaka 13)

Radiation from NS merger

Fainter and faster than supernovae

Higher velocities than supernovae

Supernova and kilonova

Supernova and kilonova

Summary: Radiation from supernovae (II)

• Timescale of emission

- Photons diffusion in expanding material (bound-bound transitions and e-scattering)
- Typical timescale t ~ $\kappa^{1/2}$ Mej^{3/4} Ek^{-1/4} ~ $\kappa^{1/2}$ Mej^{1/2} v^{-1/2}
- Lessons from observations
 - M (Type II SN) > M (Type Ibc SN) > M (Type Ia SN)
 - E (CC SN) ~ E (Type Ia SN)
- Applications to Neutron star merger merger
 - Lower ejecta mass (x 1/100), Faster expansion (x 5), Higher opacity (x 100)
 - Kilonova: Fainter and faster than supernovae