Section 8. Radiation from supernovae (I)

8.1 Observations of supernovae8.2 Power source

Goals of this lecture

- Standard properties of stars
 - Stellar structure and properties
 - Stellar evolution
- Origin of the elements in the Universe
 - Nucleosynthesis in stars and supernovae
 - Explosion mechanism of supernovae
- Topics in time-domain astronomy
 - Radiation from explosive phenomena
 - Multi-messenger astronomy

Minimum required knowledge for galactic astronomy

Spot the difference!!

Spot the difference! (level **)

(C) Rod Pommier <u>https://www.sbig.com</u>

Answer

Observations of transients

• Light curve

 Time evolution of luminosity (total or in a certain band)

Spectra

 Flux as a function of wavelengths (and their time evolution)

Light curves

Type I - Peak - L(la) > L(lb, lc) Type II - plateau

- L(Ia) > L(II)

Spectra of supernovae

- Thermal continuum
- Broad absorption
- Doppler shift
- Associated with emission component

Core-collapse SNe and their progenitors

Mass loss due to stellar wind

Line profile

"P-Cygni" Profile

Observer

Doppler effects

$$\lambda = \left(\frac{c-v}{c}\right)\lambda_0$$

$$\frac{v}{c} = \frac{(\lambda_0 - \lambda)}{\lambda_0}$$

H line in Type II SNe

v/c = 163/6563

=> v = 0.025 x c ~ 7,000 km/s

Si line in Type la SNe

"photosphere"

Absorption lines

No photosphere

Nebular spectra

Abundance profiling

Obs

Theory

Tanaka+10

Section 8. Radiation from supernovae (I)

8.1 Observations of supernovae8.2 Power source

Light curves

Type I - Peak - L(la) > L(lb, lc) Type II - plateau

- L(Ia) > L(II)

What powers the extreme luminosity of supernovae?

What can we learn from observations?

Heating source of supernovae

1. Radioactivity (56Ni)

Important in all the types Type Ia > Core-collapse

2. Shock heating

Important for large-radius star (Type II)

- **3. Interaction with CSM** Ekin => Eth (Type IIn)
- 4. Magnetar?
 Erot => energy loss by spin down

Light curves

1043 erg s-1

10⁴² erg s⁻¹

Type la SNe eject more ⁵⁶Ni

56Ni

56**CO**

e capture ${}^{56}\text{Ni} \Rightarrow {}^{56}\text{Co} + \gamma + \nu_e$.

τ = 8.8 days

Signature of CSM interaction

Type IIn SNe: powered from CSM interaction

Type IIn SN - More luminous than Type II SN

- Slower evolution
- Large diversity

Estimate of mass loss rate

Signature of strong mass loss just before the explosion

Summary: Radiation from supernovae (I)

- Erad ~ 10⁴⁹ erg
 << Ekin (10⁵¹ erg) << Egrav (10⁵³ erg)
- Power source
 - Radioactivity (⁵⁶Ni)
 - Shock heating
 - Interaction with CSM, magnetar, ...
- Lessons from observations
 - M_Fe (Type Ia SN) > M_Fe (CC SN)
 - R (Type II SN) > R (Type Ibc SN) > R (Type Ia SN)