Section 7. Mechanism of core-collapse supernovae

7.1 Energetics

7.2 Mechanism of core-collapse supernovae

Let's understand these questions with the words of physics

- Why are stars so luminous?
- Why do stars show L ~ M⁴?
- Why do stars evolve?
- Why does the destiny of stars depend on the mass?
- Why do some stars explode?
- Why don't normal star explode?
- Why does stellar core collapses?
- Why is the energy of supernova so huge?

Results of simulations (1D)

Why do stars finally explode? Why is it difficult to reproduce explosions?

(C) 原子核から読み解く超新星爆発の世界住吉光介さん著 (Kosuke Sumiyoshi)

E ~ 10⁵⁰ erg (smaller than observations by 1 order of magnitude) One of the biggest mystery in modern astrophysics

SN 1987A (in Large Magellanic cloud, 50 kpc)

Neutrino detection From SN 1987A

Kamiokande

(C) ICRR

E_{nu} ~ 10⁵³ erg!! => Foundation of neutrinodriven mechanism

* Observed energy (anti electron neutrino) x 6

Jegerlehner et al. 1996

Assignment 4

Kamiokande detected 11 neutrino events from SN 1987A. By this fact, estimate total neutrino energy that SN 1987A released

- You can assume the same numbers for all the flavors (6 flavors).
- protons in water are main reactor (Cross section σ ~ 10^{-41} cm^2)
- Effective volume of Kamiokande 2 kton
- Distance to the LMC is 50 kpc

$$\bar{\nu_e} + p \to e^+ + n$$

レポート課題4

カミオカンデで11イベントのニュートリノが観測された。 このことから、SN 1987Aがニュートリノとして放出した 総エネルギーを概算せよ

* すべてのフレーバーのニュートリノが同数放出されたと仮定して良い * 主な反応は水分子中の陽子 (反応断面積σ ~ 10⁻⁴¹ cm²) * カミオカンデの有効体積 2 kton * 大マゼラン雲までの距離 50 kpc

$$\bar{\nu_e} + p \to e^+ + n$$

Timescales of core-collapse supernovae

R(RSG) ~ 1000 Rsun ~ 10¹⁴ cm

v(SN) ~ 10,000 km/s (10⁹ cm/s)

Shock breakout t(breakout) = R(RSG)/v(SN) ~ 10¹⁴/10⁹ ~ 10⁵ sec ~ 1 day Before

Nomoto+13

After

Nomoto+13

Summary: Core-collapse supernovae

Energetics

- Gravitational energy Eg ~ 10⁵³ erg
- Kinetic energy Ek ~ 10⁵¹ erg
- Explosion mechanism
 - Core-collapse => Bounce => Shock stalled => neutrino heating
 - Neutrino detection from SN 1987A
 - Detailed mechanism is not yet understood

Thermodynamics

Classical mechanics

Electromagnetism

Statistical mechanics

Astrophysics

Hydrodynamics

Quantum mechanics

Relativity

Nuclear physics