Section 6. End of massive stars

6.1 Dynamical stability of stars6.2 Core-collapse of massive stars

Let's understand these questions with the words of physics

- Why are stars so luminous?
- Why do stars show L ~ M⁴?
- Why do stars evolve?
- Why does the destiny of stars depend on the mass?
- Why do some stars explode?
- Why don't normal star explode?
- Why does stellar core collapses?
- Why is the energy of supernova so huge?

1. Massive stars

M > 10 Msun

20 Msun star (~16 Msun before the collapse)	Mass (Msun)	R (Rsun)	Free-fall time (s)	
	16	1000	3x 10 ⁷ (1yr)	
He	6	0.5	300	
	5	0.2	50	
C/0	4	0.08	20	
U/Ivig	2	0.005	1	
Fe	1.5	0.003	0.1	
	Rsun = 7 x 10 ¹⁰ cm			
	R(Fe core) ~ 0.003 x 7 x 10 ¹⁰ cm			
	~ 2 x 10 ⁸ cm ~ 2,000 km			

Rho-T diagram

textbook by Pols

Timescales for nuclear burning stages

Table 12.1. Properties of nuclear burning stages in a 15 M_{\odot} star (from Woosley et al. 2002).

burning stage	$T (10^9 \mathrm{K})$	ρ (g/cm ³)	fuel	main products	timescale
hydrogen	0.035	5.8	Η	He	$1.1 \times 10^{7} \text{yr}$
helium	0.18	1.4×10^{3}	He	C, O	$2.0 \times 10^6 \mathrm{yr}$
carbon	0.83	2.4×10^{5}	С	O, Ne	$2.0 \times 10^3 \text{ yr}$
neon	1.6	7.2×10^{6}	Ne	O, Mg	0.7 yr
oxygen	1.9	6.7×10^{6}	O, Mg	Si, S	2.6 yr
silicon	3.3	4.3×10^{7}	Si, S	Fe, Ni	18 d

Supernova!

Why does a core of massive star collapse? (Why don't normal star collapse or explode?)

(C) 原子核から読み解く超新星爆発の世界住吉光介さん著 (Kosuke Sumiyoshi)

Summary: End of massive stars

Stability of star

- Dynamically unstable if adiabatic index $\gamma < 4/3$
- Degenerate Fe core => close to instability
- What trigger the core-collapse?
 - High density => electron capture
 - High temperature => Fe disassociation