Section 4. Stellar evolution

4.1 Virial theorem4.2 Evolution of density and temperature

Let's understand these questions with the words of physics

- Why are stars so luminous?
- Why do stars show L ~ M⁴?
- Why do stars evolve?
- Why does the destiny of stars depend on the mass?
- Why do some stars explode?
- Why don't normal star explode?
- Why does stellar core collapses?
- Why is the energy of supernova so huge?

Stellar life

IMAGES NOT TO SCALE

(C: Essay Web)

Black Hole

1. Massive stars

M > 10 Msun

Why do stars evolve??

"Evolution" = Changes in the state with time

What happens when there is no more fuel for nuclear burning

E_{tot}: Total energyΩ: Gravitational energyU: Internal energy

$$U=-\frac{1}{2}\Omega$$

$$E_{\rm tot} = U + \Omega = \frac{1}{2}\Omega = -U$$

No nuclear burning

- Total energy decreases
- Contraction (gravitational energy decreases)
- Temperature rises

Heated iron

Gets colder

Gets hotter

Condition of H-burning

Lecture Note by Pols

Nuclear binding energy

 $Eb = [Nm_N + Zm_p - m_i] c^2 > 0$

Larger binding energy = more stable

Fe has the largest Eb/nucleon

Then, all the stars produce Fe? => No Stellar material does not always behave as ideal gas

Phase	Main reactions	Products	T
燃焼段階	おもな反応	おもな 生成物	温度 (10 ⁸ K)
Н	pp チェイン CNO サイクル	${}^{4}_{14}$ He	0.15-0.2
He	$\begin{array}{c} 3^{4}\text{He} \longrightarrow {}^{12}\text{C} \\ {}^{12}\text{C} + {}^{4}\text{He} \longrightarrow {}^{16}\text{O} + \gamma \end{array}$	$^{12}C_{16}O$	1.5
\mathbf{C}	$ {}^{12}\mathrm{C}{+}^{12}\mathrm{C}{\longrightarrow} \begin{cases} {}^{23}\mathrm{Na+p} \\ {}^{20}\mathrm{Ne+\alpha} \end{cases} $	Ne,Na Mg,Al	7
Ne	$\begin{vmatrix} ^{20}\mathrm{Ne}+\gamma \longrightarrow ^{16}\mathrm{O}+\alpha \\ ^{20}\mathrm{Ne}+\alpha \longrightarrow ^{24}\mathrm{Mg}+\gamma \end{vmatrix}$	O Mg	15
O	$ {}^{16}\text{O}{+}^{16}\text{O}{\longrightarrow} \begin{cases} {}^{28}\text{Si}{+}\alpha \\ {}^{31}\text{P}{+}p \end{cases} $	Si,P,S, Cl,Ar,Ca	30
Si	$\begin{vmatrix} ^{28}\text{Si}+\gamma \longrightarrow ^{24}\text{Mg}+\alpha \\ ^{24}\text{Mg}+\gamma \longrightarrow \begin{cases} ^{23}\text{Na}+p \\ ^{20}\text{Ne}+\alpha \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	Cr,Mn, Fe,Co, Ni,Cu	40
3 <u></u>	Nuclear st	tatistical e	quilibrium

元素はいかにつくられたか(岩波書店)

Do all the stars evolve to Fe core?? => No

Equation of state is important Stellar interior is not always ideal gas state

2. Low-mass stars M < 10 Msun

Stellar Cloud with Protostars

図の大きさは天体の大きさと一致していません (C

(C: Essay Web)

Stars can be supported by electron degeneracy pressure White dwarf

He

C + O

C + O

Η

White dwarf: supported degeneracy pressure

温度がゼロでも圧力が生まれる

P is non-zero even at T=0

星が「死ぬ」とはどういうことか (ベレ出版)

textbook by Pols

Assignment 2 For those who have not taken stellar evolution in undergrad course

- 2a. Derive pressure of ideal gas from the Maxwell distribution
- 2b. Derive pressure of degenerate electrons (both for non-relativistic case and relativistic case)
- **2c.** Derive radiation pressure from Planck function
- 2d. Draw the regions where
- ideal gas pressure
- degenerate pressure of non-relativistic electrons
- degenerate pressure of relativistic electrons
- radiation pressure

become dominant in the rho-T diagram.

レポート課題 2

学部の恒星物理学IIをとっていない人

2a. マクスウェル分布から 理想気体の圧力の式を導け

- 2b. 電子が非相対論的、超相対論的なときの 縮退圧の式を導き、実際に数字を入れて計算せよ
- 2c. プランク関数から輻射圧の式を導け
- 2d. 密度 温度平面で
- 理想気体のガス圧
- 電子の縮退圧(非相対論的)
- 電子の縮退圧(超相対論的)
- 輻射圧

がそれぞれ支配的になる境界を求め、図示せよ

Assignment 2

Please attend some part of the conference

"ELT Science in Light of JWST" at Katahira from June 3-7.

Summarize the one of the invited talks you got interested in (e.g., specification of TMT/GMT/ELT, some science cases)

about 2 pages, A4

レポート課題 2

学部の恒星物理学IIをとった人

6月3-7日に片平キャンパスで行われる "ELT Science in Light of JWST" (の一部)に参加して 興味のある招待講演の内容をまとめる (e.g., TMT/GMT/ELTのスペック, サイエンスケース)

A4で2ページ程度

Summary: Stellar evolution

- Virial theorem (for ideal gas case)
 - Internal energy always relates with gravitational energy
 - When stars lose energy, they contract
 - Temperature rises ("negative heat capacity")
- Evolution of density and temperature
 - Rise in temperature due to contraction T ~ $\rho^{1/3}$
 - Next burning stages => Onion-like structure
- Importance of the equation of state
 - Stars stop contraction if supported by degeneracy pressure => No temperature rise => End of nuclear burning
 - The core of low mass stars become a white dwarf

Appendix

1a. H-burning (pp chain)

$4^{1}H \rightarrow {}^{4}He + 2e^{+} + 2\nu$

Textbook by Pols

Energy production rate (per gram) q~ρT⁴

T~4 x 10⁶ K

Textbook by Prialnik

Textbook by Pols

1b. H burning (CNO cycle) E production rate q $\sim \rho T^{16}$ T $\sim 1.5 \times 10^7$ K

$$\downarrow^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma$$

$${}^{13}N \rightarrow {}^{13}C + e^{+} + \nu$$

$${}^{13}C + {}^{1}H \rightarrow {}^{14}N + \gamma$$

$$\downarrow^{13}C + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{14}N + {}^{1}H \rightarrow {}^{15}O + \gamma$$

$${}^{15}O \rightarrow {}^{15}N + e^{+} + \nu$$

$${}^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He$$

$$\downarrow$$

$$\downarrow^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{16}O + {}^{1}H \rightarrow {}^{17}F + \gamma$$

$${}^{17}F \rightarrow {}^{17}O + e^{+} + \nu$$

$${}^{17}O + {}^{1}H \rightarrow {}^{14}N + {}^{4}He$$

Textbook by Prialnik

Textbook by Pols

2. He-burning (triple alpha)

$${}^{4}\text{He} + {}^{4}\text{He} \leftrightarrow {}^{8}\text{Be}$$
$${}^{8}\text{Be} + {}^{4}\text{He} \rightarrow {}^{12}\text{C}^{*} \rightarrow {}^{12}\text{C} + \gamma$$
$${}^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O} + \gamma,$$

Energy production rate (per gram) q ~ ρ²T⁴⁰

> ^{0⁵g cm⁻³ → ⁿ(^oBe) : n(^oHe) = 1: 1 Textbook by Prialnik}

T ~ 1.5 x 10⁸ K

3. C-burning

$$^{12}C + {}^{12}C \rightarrow {}^{24}Mg^* \rightarrow {}^{20}Ne + \alpha$$

 $\rightarrow {}^{23}Na + p$

4. Ne-burning

²⁰Ne +
$$\gamma \leftrightarrow {}^{16}O + \alpha$$

²⁰Ne + $\alpha \rightarrow {}^{24}Mg + \gamma$

T ~ 7 x 10⁸ K

T ~ 1.5 x 10⁹ K

5. O-burning

$$^{16}O + {}^{16}O \rightarrow {}^{32}S^* \rightarrow {}^{28}Si + \alpha$$

 $\rightarrow {}^{31}P + p$

T ~ 2-3 x 10⁹ K

6. Si-burning (Nuclear statistical equilibrium) T > 4 x 10⁹ K

High temperature => photo-dissociation

²⁸Si
$$(\gamma, \alpha)$$
 ²⁴Mg (γ, α) ²⁰Ne (γ, α) ¹⁶O (γ, α) ¹²C (γ, α) 2 α

He capture

²⁸Si
$$(\alpha, \gamma)$$
 ³²S (α, γ) ³⁶Ar (α, γ) ⁴⁰Ca (α, γ) ⁴⁴Ti (α, γ) ... ⁵⁶Ni

=> equilibrium of many reactions

$$^{28}\text{Si} + \gamma \leftrightarrow ^{24}\text{Mg} + \alpha$$
,

Nuclei with high binding energy tend to be produced (Fe, Co, Ni)