
Sec$on 4. 
Stellar evolu$on

4.1 Virial theorem 

4.2 Evolu$on of density and temperature



Let’s understand these ques$ons  
with the words of physics

• Why are stars so luminous? 

• Why do stars show L ~ M4? 

• Why do stars evolve? 

• Why does the des9ny of stars depend on the mass? 

• Why do some stars explode? 

• Why don’t normal star explode? 

• Why does stellar core collapses? 

• Why is the energy of supernova so huge? 

• …
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Stellar life
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惑星状星雲
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図の大きさは天体の大きさと一致していません

1. Massive stars

~ 10 Myr

M > 10 Msun



H He
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Why do stars evolve??

“Evolu$on” = Changes in the state with $me 

What happens when there is no more fuel for nuclear burning
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Etot: Total energy 
Ω: Gravita$onal energy 
U: Internal energy
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No nuclear burning 
- Total energy decreases 
- Contrac$on (gravita$onal energy decreases) 
- Temperature rises



H He C+O

HeContrac$on 
=> temperature rise 

Τ ~ ρ1/3

Triple alpha

=> C
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Heated iron stars

Gets colder

http://iron.minatoseiki.co.jp/seizo.html

Gets ho^er



Condi$on of H-burning

Lecture Note by Pols 
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Figure 8.3. The same schematic evolution tracks as
in Fig. 8.2, together with the approximate regions in
the log Tc – log ρc plane where nuclear burning stages
occur.

by He-burning reactions. This can go on for a length of time equal to the nuclear timescale of He
burning, which is about 0.1 times that of H burning. In stars with a He core mass < 0.3 M! the core
becomes degenerate before reaching Tc = 108 K, and in the absence of a surrounding envelope it
would cool to become a white dwarf composed of helium, as suggested by Fig. 8.3. (In practice,
however, H-burning in a shell around the core keeps the core hot and when Mc has grown to ≈ 0.5 M!
He ignites in a degenerate flash.)

After the exhaustion of He in the core, the core again resumes its contraction on a thermal
timescale, until the next fuel can be ignited. Following a similar line of reasoning the minimum
(core) mass for C-burning, which requires T ≈ 5 × 108 K, is ≈ 1.1 M!. Less massive cores are
destined to never ignite carbon but to become degenerate and cool as CO white dwarfs. The mini-
mum core mass required for the next stage, Ne-burning, turns out to be ≈ MCh. Stars that develop
cores with Mc > MCh therefore also undergo all subsequent nuclear burning stages (Ne-, O- and Si-
burning) because they never become degenerate and continue to contract and heat after each burning
phase. Eventually they develop a core consisting of Fe, from which no further nuclear energy can be
squeezed. The Fe core must collapse in a cataclysmic event (a supernova or a gamma-ray burst) and
become a neutron star or black hole.

The alternation of gravitational contraction and nuclear burning stages is summarized in Table 8.1,
together with the corresponding minimum masses and characteristic temperatures and energies. The
schematic picture presented in Fig. 8.3 of the evolution of stars of different masses in the T–ρ diagram
can be compared to Fig. 8.4, which shows the results of detailed calculations for various masses.

To summarize, we have obtained the following picture. Nuclear burning cycles can be seen as long-
lived but temporary interruptions of the inexorable contraction of a star (or at least its core) under
the influence of gravity. This contraction is dictated by the virial theorem, and a result of the fact
that stars are hot and lose energy by radiation. If the core mass is less than the Chandrasekhar mass,
then the contraction can eventually be stopped (after one or more nuclear cycles) when electron
degeneracy supplies the pressure needed to withstand gravity. However if the core mass exceeds
the Chandrasekhar mass, then degeneracy pressure is not enough and contraction, interrupted by
nuclear burning cycles, must continue at least until nuclear densities are reached.
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Nuclear binding energy

Eb = [NmN + Zmp - mi] c2  > 0

Larger binding energy 
= more stable 

Fe has the largest 
Eb/nucleon

Then, all the stars produce Fe? => No 
Stellar material does not always behave as ideal gas



元素はいかにつくられたか（岩波書店）

Main reac$ons Products TPhase

Nuclear sta$s$cal equilibrium



Do all the stars evolve to Fe core?? => No 

Equa9on of state is important 
Stellar interior is not always ideal gas state



(C: Essay Web)
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M < 10 Msun 2. Low-mass stars

1-10 Gyr



H He

Images are not to scale

C + O

C + OWhite dwarf

Stars can be supported by  
electron degeneracy pressure



普通の気体の圧力

温度を下げる

圧力が下がる

温度がゼロでも圧力が生まれる

縮退圧

座れない ＝ 反発

普通の気体の圧力

温度を下げる

圧力が下がる

温度がゼロでも圧力が生まれる

縮退圧

座れない ＝ 反発

White dwarf: supported degeneracy pressure

星が「死ぬ」とはどういうことか
（ベレ出版）

Ideal gas

T decreases

Degeneracy pressure

P is non-zero  
even at T=0
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Figure 8.2. The equation of state in the logTc – log ρc plane (left panel), with approximate boundaries between
regions where radiation pressure, ideal gas pressure, non-relativistic electron degeneracy and extremely rela-
tivistic electron degeneracy dominate, for a composition of X = 0.7 and Z = 0.02. In the right panel, schematic
evolution tracks for contracting stars of 0.1 – 100 M! have been added.

pressure is important: the larger the mass of a star, the more important is the radiation pressure.
Furthermore, the relative importance of radiation pressure does not change as a star contracts, because
the track runs parallel to the boundary between ideal gas and radiation pressure.1

As the density increases, stars with M < MCh approach the region where non-relativistic electron
degeneracy dominates, because the boundary between ideal gas and NR degeneracy has a steeper
slope than the evolution track. Inside this region, equating relation (8.1) to the NR degenerate pressure
gives:

KNR
ρc

1/3

µe5/3 = CGM
2/3 → ρc =

(

CG
KNR

)3

µe
5M2 (8.4)

When degeneracy dominates the track becomes independent of Tc, and the star moves down along a
track of constant ρc. This is the ρc,max we found from the Pc, ρc diagram. The larger the mass, the
higher this density. (When the electrons become relativistic at ρc ∼> 106 g/cm3, the pressure increases
less steeply with density so that the central density for a degenerate star of mass M is in fact larger
than given by eq. 8.4).

Equations (8.3) and (8.4) imply that, for a star with M < MCh that contracts quasi-statically, Tc
increases as ρc1/3 until the electrons become degenerate. Then a maximum temperature is reached,
and subsequently the star cools at a constant density when degenerate electrons provide the pressure.
The schematic evolution tracks for 0.1 and 1.0 M! given in Fig. 8.2 show this behaviour. This can
be compared to eq. (7.41) for homologous contraction (Sec. 7.4.3), which indicates that the slope of
an evolution track in the logT – log ρ plane is equal to ( 4

3 − χρ)/χT . This equals 1
3 for an ideal gas,

but changes sign and becomes negative once χρ > 4
3 . When degeneracy is almost complete, χρ = 5

3
and χT → 0 such that the slope approaches infinity. The maximum temperature is reached when the

1It is easy to show for yourself that the evolution track for a star in which radiation pressure dominates would have the
same slope of 1

3 in the logT , log ρ plane. However, such stars are very close to dynamical instability.
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Assignment 2

2a. Derive pressure of ideal gas from the Maxwell distribu$on 

2b. Derive pressure of degenerate electrons  
       (both for non-rela$vis$c case and rela$vis$c case) 

2c. Derive radia$on pressure from Planck func$on 

2d. Draw the regions where 

- ideal gas pressure 

- degenerate pressure of non-rela$vis$c electrons 

- degenerate pressure of rela$vis$c electrons 

- radia$on pressure 

become dominant in the rho-T diagram.

For those who have not taken stellar evolu$on in undergrad course



レポート課題 2
2a. マクスウェル分布から 
　 理想気体の圧力の式を導け 

2b. 電子が非相対論的、超相対論的なときの 
　 縮退圧の式を導き、実際に数字を入れて計算せよ 

2c. プランク関数から輻射圧の式を導け 

2d. 密度 - 温度平面で 

- 理想気体のガス圧 

- 電子の縮退圧（非相対論的） 

- 電子の縮退圧（超相対論的） 

- 輻射圧 

がそれぞれ支配的になる境界を求め、図示せよ

学部の恒星物理学IIをとっていない人



Assignment 2

Please a^end some part of the conference  

“ELT Science in Light of JWST” at Katahira from June 3-7. 

Summarize the one of the invited talks you got interested in  
(e.g., specifica$on of TMT/GMT/ELT, some science cases) 

about 2 pages, A4

For those who have taken stellar evolu$on in undergrad course

レポート課題 2 学部の恒星物理学IIをとった人

6月3-7日に片平キャンパスで行われる 
“ELT Science in Light of JWST” (の一部)に参加して 
興味のある招待講演の内容をまとめる 
(e.g., TMT/GMT/ELTのスペック, サイエンスケース) 

 A4で2ページ程度



Summary: Stellar evolu$on
• Virial theorem (for ideal gas case) 

• Internal energy always relates with gravita9onal energy 

• When stars lose energy, they contract 

• Temperature rises (“nega9ve heat capacity”) 

• Evolu$on of density and temperature 

• Rise in temperature due to contrac9on T ~ ρ1/3　 

• Next burning stages => Onion-like structure 

• Importance of the equa$on of state 

• Stars stop contrac9on if supported by degeneracy pressure  
=> No temperature rise => End of nuclear burning 

• The core of low mass stars become a white dwarf



Appendix



1a. H-burning  (pp chain)

Note the similarity between the expressions for the nuclear energy generation rate (6.37) and the
equation for composition changes (6.41), both of which are proportional to ri j. Using eq. (6.35) for
the energy released per gram, we can write the reaction rate as

ri j =
εi j

qi j(Ai + Aj)
ρ

mu
. (6.42)

If we substitute this expression into eq. (6.41) the factor ρ/mu drops out. We obtain a useful expression
in simple cases where only one reaction occurs, or a reaction chain in which one reaction determines
the overall rate. An example is the fusion of 4 1H into 4He, which is the net result of a chain of
reactions (see Sec. 6.4.1). In that case you may verify that (6.41) and (6.42) reduce to

dY
dt
= −

dX
dt
=
εH

qH
, (6.43)

where εH is the energy generation rate by the complete chain of H-burning reactions, and qH is amount
of energy produced by converting 1 gram of 1H into 4He.

6.4 The main nuclear burning cycles

In principle, many different nuclear reactions can occur simultaneously in a stellar interior. If one is
interested in following the detailed isotopic abundances produced by all these reactions, or if structural
changes occur on a very short timescale, a large network of reactions has to be calculated (as implied
by eq. 6.41). However, for the calculation of the structure and evolution of a star usually a much
simpler procedure is sufficient, for the following reasons:

• The very strong dependence of nuclear reaction rates on the temperature, combined with the
sensitivity to the Coulomb barrier Z1Z2, implies that nuclear fusions of different possible fuels
– hydrogen, helium, carbon, etc. – are well separated by substantial temperature differences.
The evolution of a star therefore proceeds through several distinct nuclear burning cycles.

• For each nuclear burning cycle, only a handful of reactions contribute significantly to energy
production and/or cause major changes to the overall composition.

• In a chain of subsequent reactions, often one reaction is by far the slowest and determines the
rate of the whole chain. Then only the rate of this bottleneck reaction needs to be taken into
account.

6.4.1 Hydrogen burning

The net result of hydrogen burning is the fusion of four 1H nuclei into a 4He nucleus,

4 1H→ 4He + 2 e+ + 2 ν . (6.44)

You may verify using Sec. 6.1.1 that the total energy release is 26.734MeV. In order to create a 4He
nucleus two protons have to be converted into neutrons. Therefore two neutrinos are released by weak
interactions (p→ n+ e+ + ν), which escape without interacting with the stellar matter. It is customary
not to include the neutrino energies into the overall energy release Q, but to take into account only
the energy that is used to heat the stellar gas. This includes energy released in the form of γ-rays
(including the γ-rays resulting from pair annihilation after e+ emission) and in the form of kinetic
energies of the resulting nuclei. The effective Q-value of hydrogen burning is therefore somewhat
smaller than 26.734MeV and depends on the reaction in which the neutrinos are emitted.
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Since a simultaneous reaction between four protons is extremely unlikely, a chain of reactions is
always necessary for hydrogen burning. This can take place in two distinct ways: either direct fusion
of protons via the p-p chain, or by using already present CNO-nuclei as catalysts in the CNO cycle.
Hydrogen burning in stars takes place at temperatures ranging between 8 × 106 K and 5.0 × 107 K,
depending on stellar mass and evolution stage.

The p-p chains

The first reaction is the so-called p-p reaction:
1H + 1H→ 2H + e+ + ν or p + p→ D + e+ + ν . (6.45)

This involves the simultaneous β-decay of one of the protons during the strong nuclear interaction.
This is very unlikely and the p-p reaction therefore has an extremely small cross-section, about 10−20
times that of a typical reaction involving only strong interactions. The reaction rate cannot be mea-
sured in the laboratory and is only known from theory.

After some deuterium is produced, it rapidly reacts with another proton to from 3He. Subse-
quently three different branches are possible to complete the chain towards 4He:

1H + 1H→ 2H + e+ + ν
2H + 1H→ 3He + γ

!
!

!
!!"

#
#

#
##$

3He + 3He→ 4He + 2 1H

pp1

3He + 4He→ 7Be + γ
!

!
!

!!"

#
#

#
##$

7Be + e− → 7Li + ν
7Li + 1H→ 4He + 4He

pp2

7Be + 1H→ 8B + γ
8B→ 8Be + e+ + ν
8Be→ 4He + 4He

pp3 (6.46)

The pp1 branch requires two 3He nuclei, so the first two reactions in the chain have to take place
twice. The alternative pp2 and pp3 branches require only one 3He nucleus and an already existing 4He
nucleus (either present primordially, or produced previously by hydrogen burning). The resulting 7Be
nucleus can either capture an electron or fuse with another proton, giving rise to the second branching
into pp2 and pp3. Three of the reactions in the chains are accompanied by neutrino emission, and the
(average) neutrino energy is different in each case: 〈Eν〉 = 0.265MeV for the p-p reaction, 0.814MeV
for electron capture of 7Be and 6.71MeV for the β-decay of 8B. Therefore the total energy release
QH for the production of one 4He nucleus is different for each chain: 26.20MeV (pp1), 25.66MeV
(pp2) and only 19.76MeV for pp3.

The relative frequency of the three chains depends on temperature and chemical composition.
Because the 3He + 4He reaction is slightly more sensitive to temperature than the 3He + 3He reaction
(it has a somewhat higher reduced mass and larger τ, eq. 6.25), the pp1 chain dominates over the other
two at relatively low temperature (T7 ∼< 1.5). The pp1 chain is the main energy-producing reaction
chain in the Sun. At increasing T , first the pp2 chain and then the pp3 chain become increasingly
important.
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Since a simultaneous reaction between four protons is extremely unlikely, a chain of reactions is
always necessary for hydrogen burning. This can take place in two distinct ways: either direct fusion
of protons via the p-p chain, or by using already present CNO-nuclei as catalysts in the CNO cycle.
Hydrogen burning in stars takes place at temperatures ranging between 8 × 106 K and 5.0 × 107 K,
depending on stellar mass and evolution stage.

The p-p chains

The first reaction is the so-called p-p reaction:
1H + 1H→ 2H + e+ + ν or p + p→ D + e+ + ν . (6.45)

This involves the simultaneous β-decay of one of the protons during the strong nuclear interaction.
This is very unlikely and the p-p reaction therefore has an extremely small cross-section, about 10−20
times that of a typical reaction involving only strong interactions. The reaction rate cannot be mea-
sured in the laboratory and is only known from theory.

After some deuterium is produced, it rapidly reacts with another proton to from 3He. Subse-
quently three different branches are possible to complete the chain towards 4He:
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The pp1 branch requires two 3He nuclei, so the first two reactions in the chain have to take place
twice. The alternative pp2 and pp3 branches require only one 3He nucleus and an already existing 4He
nucleus (either present primordially, or produced previously by hydrogen burning). The resulting 7Be
nucleus can either capture an electron or fuse with another proton, giving rise to the second branching
into pp2 and pp3. Three of the reactions in the chains are accompanied by neutrino emission, and the
(average) neutrino energy is different in each case: 〈Eν〉 = 0.265MeV for the p-p reaction, 0.814MeV
for electron capture of 7Be and 6.71MeV for the β-decay of 8B. Therefore the total energy release
QH for the production of one 4He nucleus is different for each chain: 26.20MeV (pp1), 25.66MeV
(pp2) and only 19.76MeV for pp3.

The relative frequency of the three chains depends on temperature and chemical composition.
Because the 3He + 4He reaction is slightly more sensitive to temperature than the 3He + 3He reaction
(it has a somewhat higher reduced mass and larger τ, eq. 6.25), the pp1 chain dominates over the other
two at relatively low temperature (T7 ∼< 1.5). The pp1 chain is the main energy-producing reaction
chain in the Sun. At increasing T , first the pp2 chain and then the pp3 chain become increasingly
important.
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(per gram) 

q ~ ρT4

T ~ 4 x 106 K



1b. H burning (CNO cycle)

At low temperatures (T < 8 × 106 K) the rates of all reactions should be calculated separately to
obtain the energy generation rate and the changes in abundances. In particular, the 3He+ 3He reaction
is quite slow and a substantial abundance of 3He can accumulate before further reactions occur. For
T ∼> 8 × 106 K all reactions in the chain are fast enough that they reach a steady state, where once a
D nucleus is produced by the first, very slow reaction, all successive reactions proceed very quickly
until 4He is formed. The nuclear lifetimes (eq. 6.39) of the intermediate nuclei D, 3He, 7Li, etc,
are very short compared to the overall nuclear timescale, and their abundances are very small. The
overall rate of the whole reaction chain is then set by the rate of the bottleneck p-p reaction, rpp. In
this steady-state or ‘equilibrium’ situation the rate of each subsequent reaction adapts itself to the pp
rate.1 The energy generation rate (given by the sum of energies released by each reaction, eq. 6.37)
can then be expressed in a single term of the form (6.33), i.e. εnuc = QHrpp/ρ where QH is the total
energy released in the whole chain (6.44). The above expression applies to the pp2 and pp3 chains,
which each require one p-p reaction to complete. For the pp1 chain two p-p reactions are needed and
therefore in that case εnuc = 1

2QHrpp/ρ. Expressing rpp in terms of the cross section factor 〈συ〉pp and
the hydrogen abundance X, we can compute the energy generation rate for hydrogen burning by the
combination of pp chains as

εpp = ψ qHX2
ρ

mu
〈συ〉pp, (6.47)

where qH = QH/4mu is the total energy release per gram of hydrogen burning and ψ is a factor be-
tween 1 (for the pp1 chain) and 2 (for the pp2 and pp3 chains), depending on the relative frequency of
the chains. Both ψ and qH therefore depend on the temperature, because the three chains have differ-
ent neutrino losses. The overall temperature dependence of εpp is dominated by the T -dependence of
〈συ〉pp and is shown in Fig. 6.5. The pp chain is the least temperature-sensitive of all nuclear burning
cycles with a power-law exponent ν (eq. 6.30) varying between about 6 at T6 ≈ 5 and 3.5 at T6 ≈ 20.

The CNO cycle

If some C, N, and O is already present in the gas out of which a star forms, and if the temperature
is sufficiently high, hydrogen fusion can take place via the so-called CNO cycle. This is a cyclical
sequence of reactions that typically starts with a proton capture by a 12C nucleus, as follows:

12C + 1H→ 13N + γ
13N→ 13C + e+ + ν

13C + 1H→ 14N + γ
14N + 1H→ 15O + γ

15O→ 15N + e+ + ν
15N + 1H→ 12C + 4He

!

→ 16O + γ
16O + 1H→ 17F + γ

17F→ 17O + e+ + ν
17O + 1H→ 14N + 4He

"

(6.48)
1For example, if we denote by rpD the rate of 2H + 1H, one has rpD = rpp, etc. Note that describing the p-p reaction as

‘slow’ and the 2H + 1H as ‘fast’ refers to the difference in cross-section factors 〈συ〉 and not to the number of reactions per
second r given by eq. (6.8).
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2. He-burning (triple alpha)

Textbook by Prialnik

where 〈συ〉pN is the cross-section factor of the 14N(p, γ)15O reaction which controls the rate of the
whole cycle. X14 is the 14N mass fraction in the energy-generating zone of the star, which is close
to the total abundance XCNO of CNO nuclei once equilibrium is reached in the full CNO cycle. The
energy release per unit mass qH = QH/4mu takes into account the neutrino losses, which for the CNO
cycle in equilibrium amounts to QH = 24.97MeV. The temperature sensitivity of the CNO cycle is
much higher than for the pp chain, with ν varying between 23 and 13 for T7 ranging from 1.0 to 5.0.
This is illustrated in Fig. 6.5 where the temperature dependence of εCNO is compared to that of εpp.
For the purpose of very simple approximations one can take

εpp ∝ X2 ρ T 4 and εCNO ∝ XX14 ρ T 18. (6.51)

The strong difference in temperature sensitivity has the consequence that the pp chain dominates at
low temperatures, T7 ∼< 1.5, while the CNO cycle is dominant at higher temperatures.

6.4.2 Helium burning

Helium burning consists of the fusion of 4He into a mixture of 12C and 16O, which takes place at
temperatures T ∼> 108 K. Such high temperatures are needed because (1) the Coulomb barrier for
He fusion is higher than that of the H-burning reactions considered above, and (2) fusion of 4He is
hindered by the fact that no stable nucleus exists with mass number A = 8. Therefore helium burning
must occur in two steps:

4He + 4He↔ 8Be
8Be + 4He→ 12C∗ → 12C + γ

(6.52)

The 8Be nucleus temporarily formed in the first reaction has a ground state that is 92 keV higher in
energy than that of two separate 4He nuclei. It therefore decays back into two α particles after a few
time 10−16 s. While extremely short, this time is long enough to build up a very small equilibrium
concentration of 8Be, which increases with temperature and reaches about 10−9 at T ≈ 108 K. Then
the second reaction 8Be(α, γ)12C starts to occur at a significant rate, because of a resonance at just
the Gamow peak energy. The result is an excited compound nucleus 12C∗ which subsequently decays
to the ground state of 12C with emission of a γ photon. The corresponding energy level in the 12C
nucleus was predicted by Fred Hoyle in 1954, because he could not otherwise explain the existence
of large amounts of carbon in the Universe. This excited state of 12C was subsequently found in
laboratory experiments.

The net effect of the two reactions (6.52) is called the triple-α reaction,

3 4He→ 12C + γ, (6.53)

which has Q = 7.275MeV. The energy release per unit mass is q3α = Q/m(12C) = 5.9 × 1017 erg/g,
which is about 1/10 smaller than for H-burning. Since the two reactions need to occur almost simul-
taneously, the 3α reaction behaves as if it were a three-particle reaction and its rate is proportional to
n3α. The energy-generation rate can be written as

ε3α = q3α X34 ρ
2 λ3α, (6.54)

where the temperature dependence is described by the factor λ3α, which depends on the combined
cross-sections of the two reactions (6.52). X4 ≈ Y is the mass fraction of 4He. The temperature
sensitivity of the 3α rate is extremely high, with ν ≈ 40 at T8 ≈ 1.0.

When a sufficient amount of 12C has been created by the 3α reaction, it can capture a further α
particle to form 16O,

12C + 4He→ 16O + γ, (6.55)
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where 〈συ〉pN is the cross-section factor of the 14N(p, γ)15O reaction which controls the rate of the
whole cycle. X14 is the 14N mass fraction in the energy-generating zone of the star, which is close
to the total abundance XCNO of CNO nuclei once equilibrium is reached in the full CNO cycle. The
energy release per unit mass qH = QH/4mu takes into account the neutrino losses, which for the CNO
cycle in equilibrium amounts to QH = 24.97MeV. The temperature sensitivity of the CNO cycle is
much higher than for the pp chain, with ν varying between 23 and 13 for T7 ranging from 1.0 to 5.0.
This is illustrated in Fig. 6.5 where the temperature dependence of εCNO is compared to that of εpp.
For the purpose of very simple approximations one can take

εpp ∝ X2 ρ T 4 and εCNO ∝ XX14 ρ T 18. (6.51)

The strong difference in temperature sensitivity has the consequence that the pp chain dominates at
low temperatures, T7 ∼< 1.5, while the CNO cycle is dominant at higher temperatures.

6.4.2 Helium burning

Helium burning consists of the fusion of 4He into a mixture of 12C and 16O, which takes place at
temperatures T ∼> 108 K. Such high temperatures are needed because (1) the Coulomb barrier for
He fusion is higher than that of the H-burning reactions considered above, and (2) fusion of 4He is
hindered by the fact that no stable nucleus exists with mass number A = 8. Therefore helium burning
must occur in two steps:

4He + 4He↔ 8Be
8Be + 4He→ 12C∗ → 12C + γ

(6.52)

The 8Be nucleus temporarily formed in the first reaction has a ground state that is 92 keV higher in
energy than that of two separate 4He nuclei. It therefore decays back into two α particles after a few
time 10−16 s. While extremely short, this time is long enough to build up a very small equilibrium
concentration of 8Be, which increases with temperature and reaches about 10−9 at T ≈ 108 K. Then
the second reaction 8Be(α, γ)12C starts to occur at a significant rate, because of a resonance at just
the Gamow peak energy. The result is an excited compound nucleus 12C∗ which subsequently decays
to the ground state of 12C with emission of a γ photon. The corresponding energy level in the 12C
nucleus was predicted by Fred Hoyle in 1954, because he could not otherwise explain the existence
of large amounts of carbon in the Universe. This excited state of 12C was subsequently found in
laboratory experiments.

The net effect of the two reactions (6.52) is called the triple-α reaction,

3 4He→ 12C + γ, (6.53)

which has Q = 7.275MeV. The energy release per unit mass is q3α = Q/m(12C) = 5.9 × 1017 erg/g,
which is about 1/10 smaller than for H-burning. Since the two reactions need to occur almost simul-
taneously, the 3α reaction behaves as if it were a three-particle reaction and its rate is proportional to
n3α. The energy-generation rate can be written as

ε3α = q3α X34 ρ
2 λ3α, (6.54)

where the temperature dependence is described by the factor λ3α, which depends on the combined
cross-sections of the two reactions (6.52). X4 ≈ Y is the mass fraction of 4He. The temperature
sensitivity of the 3α rate is extremely high, with ν ≈ 40 at T8 ≈ 1.0.

When a sufficient amount of 12C has been created by the 3α reaction, it can capture a further α
particle to form 16O,

12C + 4He→ 16O + γ, (6.55)
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3. C-burning
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Figure 6.6. Dependence of the mass fractions of
12C and 16O on 4He during He-burning, for typical
conditions in intermediate-mass stars.

which has Q = 7.162 MeV, or qαC = 4.32 × 1017 erg per gram of produced 16O. In principle further
α captures on 16O are possible, forming 20Ne, but during normal helium burning conditions these are
very rare. The 12C(α, γ)16O reaction is strongly affected by resonances and its rate is quite uncertain.
This is important because this reaction competes with the 3α reaction for available 4He nuclei, as
illustrated by Fig. 6.6. The final 12C/16O ratio reached at the end of He-burning is therefore also
uncertain.

6.4.3 Carbon burning and beyond

In the mixture of mainly 12C and 16O that is left after helium burning, further fusion reactions can
occur if the temperature rises sufficiently. In order of increasing temperature, the nuclear burning
cycles that may follow are the following.

Carbon burning When the temperature exceeds T8 ∼> 5 the large Coulomb barrier for 12C + 12C
fusion can be overcome. This is a complicated reaction, in which first an excited compound 24Mg
nucleus is formed which can then decay via many different channels. The most important channels
are the following:

12C + 12C→ 24Mg∗ → 20Ne + α Q = 4.616 MeV (∼ 50%)

→ 23Na + p Q = 2.238 MeV (∼ 50%)
(6.56)

The protons and α particles released find themselves at extremely high temperatures compared to
those needed for hydrogen and helium burning, and will almost immediately react with other nuclei
in the mixture, from 12C to 24Mg. Examples are 23Na(p,α)20Ne, 20Ne(α, γ)24Mg and chains such as
12C(p, γ)13N(e+ν)13C(α, n)16O, where the neutron will immediately react further. The overall energy
release is obtained from the combination of all these reactions and is roughly Q ≈ 13 MeV per
12C+12C reaction. The main products after exhaustion of all carbon are 16O, 20Ne and 24Mg (together
95% by mass fraction). These most abundant nuclei have equal numbers of protons and neutron, but
some of the side reactions produce neutron-rich isotopes like 21,22Ne, 23Na and 25,26Mg, so that after
C burning the overall composition has a ‘neutron excess’ (n/p > 1, or µe > 2).
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4. Ne-burning

Neon burning The next nuclear burning cycle might be expected to be oxygen fusion, but already
at somewhat lower temperature (T9 ≈ 1.5) a process called ‘neon burning’ is initiated by the photo-
disintegration of 20Ne. At this temperature a sufficient number of photons have energies in the MeV
range which is sufficient to break up the relatively fragile 20Ne nucleus into 16O and 4He. This is
immediately followed by the capture of the α particle by another 20Ne nucleus, thus:

20Ne + γ ↔ 16O + α Q = −4.73MeV
20Ne + α→ 24Mg + γ Q = 9.31MeV

(6.57)

The first reaction is endothermic, but effectively the two reactions combine to 2 20Ne → 16O + 24Mg
with a net energy release Q > 0. The composition after neon burning is mostly 16O and 24Mg (together
95% by mass fraction).

Oxygen burning At T9 ≈ 2.0 fusion of 16O nuclei sets in, which is in many ways analogous to the
carbon fusion reaction described above. Also in this case there are several reaction channels, the most
important ones being:

16O + 16O→ 32S∗ → 28Si + α Q = 9.59MeV (∼ 60%)

→ 31P + p Q = 7.68MeV (∼ 40%)
(6.58)

Similar to carbon burning, the p and α particles are immediately captured by other nuclei, giving
rise to a multitude of secondary reactions that eventually lead to a composition mostly consisting
of 28Si and 32S (together 90% by mass fraction). The net energy release per 16O + 16O reaction is
Q ≈ 16MeV. Since some of the side reactions involve β+-decays and electron captures, the neutron
excess of the final mixture is further increased.

Silicon burning The lightest and most abundant nucleus in the ashes of oxygen burning is 28Si, but
the Coulomb barrier for 28Si + 28Si fusion is prohibitively high. Instead silicon burning proceeds by
a series of photo-disintegration (γ,α) and α-capture (α, γ) reactions when T9 ∼> 3. Part of the silicon
‘melts’ into lighter nuclei, while another part captures the released 4He to make heavier nuclei:

28Si (γ,α) 24Mg (γ,α) 20Ne (γ,α) 16O (γ,α) 12C (γ,α) 2α
28Si (α, γ) 32S (α, γ) 36Ar (α, γ) 40Ca (α, γ) 44Ti (α, γ) . . . 56Ni

(6.59)

Most of these reactions are in equilibrium with each other, e.g. 28Si + γ ↔ 24Mg + α, and the
abundances of the nuclei can be described by nuclear equivalents of the Saha equation for ionization
equilibrium. For T > 4 × 109 K a state close to nuclear statistical equilibrium (NSE) can be reached,
where the most abundant nuclei are those with the lowest binding energy, constrained by the total
number of neutrons and protons present. The final composition is then mostly 56Fe because n/p > 1
(due to β-decays and e−-captures during previous burning cycles).

6.5 Neutrino emission

Neutrinos play a special role because their cross-section for interaction with normal matter is ex-
tremely small. The neutrinos that are released as a by-product of nuclear reactions have typical
energies in the MeV range, and at such energies the interaction cross-section is σν ∼ 10−44 cm2.
The corresponding mean free path in matter at density ρ = nµmu is 'ν = 1/(nσν) = µmu/(ρσν) ∼
2 × 1020 cm/ρ, for µ ≈ 1. Even at densities as high as 106 g/cm3, this gives 'ν ∼ 3000R(. Therefore
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T ~ 7 x 108 K

T ~ 1.5 x 109 K

5. O-burning

Neon burning The next nuclear burning cycle might be expected to be oxygen fusion, but already
at somewhat lower temperature (T9 ≈ 1.5) a process called ‘neon burning’ is initiated by the photo-
disintegration of 20Ne. At this temperature a sufficient number of photons have energies in the MeV
range which is sufficient to break up the relatively fragile 20Ne nucleus into 16O and 4He. This is
immediately followed by the capture of the α particle by another 20Ne nucleus, thus:

20Ne + γ ↔ 16O + α Q = −4.73MeV
20Ne + α→ 24Mg + γ Q = 9.31MeV

(6.57)

The first reaction is endothermic, but effectively the two reactions combine to 2 20Ne → 16O + 24Mg
with a net energy release Q > 0. The composition after neon burning is mostly 16O and 24Mg (together
95% by mass fraction).

Oxygen burning At T9 ≈ 2.0 fusion of 16O nuclei sets in, which is in many ways analogous to the
carbon fusion reaction described above. Also in this case there are several reaction channels, the most
important ones being:

16O + 16O→ 32S∗ → 28Si + α Q = 9.59MeV (∼ 60%)

→ 31P + p Q = 7.68MeV (∼ 40%)
(6.58)

Similar to carbon burning, the p and α particles are immediately captured by other nuclei, giving
rise to a multitude of secondary reactions that eventually lead to a composition mostly consisting
of 28Si and 32S (together 90% by mass fraction). The net energy release per 16O + 16O reaction is
Q ≈ 16MeV. Since some of the side reactions involve β+-decays and electron captures, the neutron
excess of the final mixture is further increased.

Silicon burning The lightest and most abundant nucleus in the ashes of oxygen burning is 28Si, but
the Coulomb barrier for 28Si + 28Si fusion is prohibitively high. Instead silicon burning proceeds by
a series of photo-disintegration (γ,α) and α-capture (α, γ) reactions when T9 ∼> 3. Part of the silicon
‘melts’ into lighter nuclei, while another part captures the released 4He to make heavier nuclei:

28Si (γ,α) 24Mg (γ,α) 20Ne (γ,α) 16O (γ,α) 12C (γ,α) 2α
28Si (α, γ) 32S (α, γ) 36Ar (α, γ) 40Ca (α, γ) 44Ti (α, γ) . . . 56Ni

(6.59)

Most of these reactions are in equilibrium with each other, e.g. 28Si + γ ↔ 24Mg + α, and the
abundances of the nuclei can be described by nuclear equivalents of the Saha equation for ionization
equilibrium. For T > 4 × 109 K a state close to nuclear statistical equilibrium (NSE) can be reached,
where the most abundant nuclei are those with the lowest binding energy, constrained by the total
number of neutrons and protons present. The final composition is then mostly 56Fe because n/p > 1
(due to β-decays and e−-captures during previous burning cycles).

6.5 Neutrino emission

Neutrinos play a special role because their cross-section for interaction with normal matter is ex-
tremely small. The neutrinos that are released as a by-product of nuclear reactions have typical
energies in the MeV range, and at such energies the interaction cross-section is σν ∼ 10−44 cm2.
The corresponding mean free path in matter at density ρ = nµmu is 'ν = 1/(nσν) = µmu/(ρσν) ∼
2 × 1020 cm/ρ, for µ ≈ 1. Even at densities as high as 106 g/cm3, this gives 'ν ∼ 3000R(. Therefore

93

T ~ 2-3 x 109 K



6. Si-burning（Nuclear sta$s$cal equilibrium）
T > 4 x 109 K

Neon burning The next nuclear burning cycle might be expected to be oxygen fusion, but already
at somewhat lower temperature (T9 ≈ 1.5) a process called ‘neon burning’ is initiated by the photo-
disintegration of 20Ne. At this temperature a sufficient number of photons have energies in the MeV
range which is sufficient to break up the relatively fragile 20Ne nucleus into 16O and 4He. This is
immediately followed by the capture of the α particle by another 20Ne nucleus, thus:

20Ne + γ ↔ 16O + α Q = −4.73MeV
20Ne + α→ 24Mg + γ Q = 9.31MeV

(6.57)

The first reaction is endothermic, but effectively the two reactions combine to 2 20Ne → 16O + 24Mg
with a net energy release Q > 0. The composition after neon burning is mostly 16O and 24Mg (together
95% by mass fraction).

Oxygen burning At T9 ≈ 2.0 fusion of 16O nuclei sets in, which is in many ways analogous to the
carbon fusion reaction described above. Also in this case there are several reaction channels, the most
important ones being:

16O + 16O→ 32S∗ → 28Si + α Q = 9.59MeV (∼ 60%)

→ 31P + p Q = 7.68MeV (∼ 40%)
(6.58)

Similar to carbon burning, the p and α particles are immediately captured by other nuclei, giving
rise to a multitude of secondary reactions that eventually lead to a composition mostly consisting
of 28Si and 32S (together 90% by mass fraction). The net energy release per 16O + 16O reaction is
Q ≈ 16MeV. Since some of the side reactions involve β+-decays and electron captures, the neutron
excess of the final mixture is further increased.

Silicon burning The lightest and most abundant nucleus in the ashes of oxygen burning is 28Si, but
the Coulomb barrier for 28Si + 28Si fusion is prohibitively high. Instead silicon burning proceeds by
a series of photo-disintegration (γ,α) and α-capture (α, γ) reactions when T9 ∼> 3. Part of the silicon
‘melts’ into lighter nuclei, while another part captures the released 4He to make heavier nuclei:

28Si (γ,α) 24Mg (γ,α) 20Ne (γ,α) 16O (γ,α) 12C (γ,α) 2α
28Si (α, γ) 32S (α, γ) 36Ar (α, γ) 40Ca (α, γ) 44Ti (α, γ) . . . 56Ni

(6.59)

Most of these reactions are in equilibrium with each other, e.g. 28Si + γ ↔ 24Mg + α, and the
abundances of the nuclei can be described by nuclear equivalents of the Saha equation for ionization
equilibrium. For T > 4 × 109 K a state close to nuclear statistical equilibrium (NSE) can be reached,
where the most abundant nuclei are those with the lowest binding energy, constrained by the total
number of neutrons and protons present. The final composition is then mostly 56Fe because n/p > 1
(due to β-decays and e−-captures during previous burning cycles).

6.5 Neutrino emission

Neutrinos play a special role because their cross-section for interaction with normal matter is ex-
tremely small. The neutrinos that are released as a by-product of nuclear reactions have typical
energies in the MeV range, and at such energies the interaction cross-section is σν ∼ 10−44 cm2.
The corresponding mean free path in matter at density ρ = nµmu is 'ν = 1/(nσν) = µmu/(ρσν) ∼
2 × 1020 cm/ρ, for µ ≈ 1. Even at densities as high as 106 g/cm3, this gives 'ν ∼ 3000R(. Therefore
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Neon burning The next nuclear burning cycle might be expected to be oxygen fusion, but already
at somewhat lower temperature (T9 ≈ 1.5) a process called ‘neon burning’ is initiated by the photo-
disintegration of 20Ne. At this temperature a sufficient number of photons have energies in the MeV
range which is sufficient to break up the relatively fragile 20Ne nucleus into 16O and 4He. This is
immediately followed by the capture of the α particle by another 20Ne nucleus, thus:

20Ne + γ ↔ 16O + α Q = −4.73MeV
20Ne + α→ 24Mg + γ Q = 9.31MeV

(6.57)

The first reaction is endothermic, but effectively the two reactions combine to 2 20Ne → 16O + 24Mg
with a net energy release Q > 0. The composition after neon burning is mostly 16O and 24Mg (together
95% by mass fraction).

Oxygen burning At T9 ≈ 2.0 fusion of 16O nuclei sets in, which is in many ways analogous to the
carbon fusion reaction described above. Also in this case there are several reaction channels, the most
important ones being:

16O + 16O→ 32S∗ → 28Si + α Q = 9.59MeV (∼ 60%)

→ 31P + p Q = 7.68MeV (∼ 40%)
(6.58)

Similar to carbon burning, the p and α particles are immediately captured by other nuclei, giving
rise to a multitude of secondary reactions that eventually lead to a composition mostly consisting
of 28Si and 32S (together 90% by mass fraction). The net energy release per 16O + 16O reaction is
Q ≈ 16MeV. Since some of the side reactions involve β+-decays and electron captures, the neutron
excess of the final mixture is further increased.

Silicon burning The lightest and most abundant nucleus in the ashes of oxygen burning is 28Si, but
the Coulomb barrier for 28Si + 28Si fusion is prohibitively high. Instead silicon burning proceeds by
a series of photo-disintegration (γ,α) and α-capture (α, γ) reactions when T9 ∼> 3. Part of the silicon
‘melts’ into lighter nuclei, while another part captures the released 4He to make heavier nuclei:

28Si (γ,α) 24Mg (γ,α) 20Ne (γ,α) 16O (γ,α) 12C (γ,α) 2α
28Si (α, γ) 32S (α, γ) 36Ar (α, γ) 40Ca (α, γ) 44Ti (α, γ) . . . 56Ni

(6.59)

Most of these reactions are in equilibrium with each other, e.g. 28Si + γ ↔ 24Mg + α, and the
abundances of the nuclei can be described by nuclear equivalents of the Saha equation for ionization
equilibrium. For T > 4 × 109 K a state close to nuclear statistical equilibrium (NSE) can be reached,
where the most abundant nuclei are those with the lowest binding energy, constrained by the total
number of neutrons and protons present. The final composition is then mostly 56Fe because n/p > 1
(due to β-decays and e−-captures during previous burning cycles).

6.5 Neutrino emission

Neutrinos play a special role because their cross-section for interaction with normal matter is ex-
tremely small. The neutrinos that are released as a by-product of nuclear reactions have typical
energies in the MeV range, and at such energies the interaction cross-section is σν ∼ 10−44 cm2.
The corresponding mean free path in matter at density ρ = nµmu is 'ν = 1/(nσν) = µmu/(ρσν) ∼
2 × 1020 cm/ρ, for µ ≈ 1. Even at densities as high as 106 g/cm3, this gives 'ν ∼ 3000R(. Therefore
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High temperature => photo-dissocia$on

He capture

=> equilibrium of many reac$ons

Neon burning The next nuclear burning cycle might be expected to be oxygen fusion, but already
at somewhat lower temperature (T9 ≈ 1.5) a process called ‘neon burning’ is initiated by the photo-
disintegration of 20Ne. At this temperature a sufficient number of photons have energies in the MeV
range which is sufficient to break up the relatively fragile 20Ne nucleus into 16O and 4He. This is
immediately followed by the capture of the α particle by another 20Ne nucleus, thus:

20Ne + γ ↔ 16O + α Q = −4.73MeV
20Ne + α→ 24Mg + γ Q = 9.31MeV

(6.57)

The first reaction is endothermic, but effectively the two reactions combine to 2 20Ne → 16O + 24Mg
with a net energy release Q > 0. The composition after neon burning is mostly 16O and 24Mg (together
95% by mass fraction).

Oxygen burning At T9 ≈ 2.0 fusion of 16O nuclei sets in, which is in many ways analogous to the
carbon fusion reaction described above. Also in this case there are several reaction channels, the most
important ones being:

16O + 16O→ 32S∗ → 28Si + α Q = 9.59MeV (∼ 60%)

→ 31P + p Q = 7.68MeV (∼ 40%)
(6.58)

Similar to carbon burning, the p and α particles are immediately captured by other nuclei, giving
rise to a multitude of secondary reactions that eventually lead to a composition mostly consisting
of 28Si and 32S (together 90% by mass fraction). The net energy release per 16O + 16O reaction is
Q ≈ 16MeV. Since some of the side reactions involve β+-decays and electron captures, the neutron
excess of the final mixture is further increased.

Silicon burning The lightest and most abundant nucleus in the ashes of oxygen burning is 28Si, but
the Coulomb barrier for 28Si + 28Si fusion is prohibitively high. Instead silicon burning proceeds by
a series of photo-disintegration (γ,α) and α-capture (α, γ) reactions when T9 ∼> 3. Part of the silicon
‘melts’ into lighter nuclei, while another part captures the released 4He to make heavier nuclei:

28Si (γ,α) 24Mg (γ,α) 20Ne (γ,α) 16O (γ,α) 12C (γ,α) 2α
28Si (α, γ) 32S (α, γ) 36Ar (α, γ) 40Ca (α, γ) 44Ti (α, γ) . . . 56Ni

(6.59)

Most of these reactions are in equilibrium with each other, e.g. 28Si + γ ↔ 24Mg + α, and the
abundances of the nuclei can be described by nuclear equivalents of the Saha equation for ionization
equilibrium. For T > 4 × 109 K a state close to nuclear statistical equilibrium (NSE) can be reached,
where the most abundant nuclei are those with the lowest binding energy, constrained by the total
number of neutrons and protons present. The final composition is then mostly 56Fe because n/p > 1
(due to β-decays and e−-captures during previous burning cycles).

6.5 Neutrino emission

Neutrinos play a special role because their cross-section for interaction with normal matter is ex-
tremely small. The neutrinos that are released as a by-product of nuclear reactions have typical
energies in the MeV range, and at such energies the interaction cross-section is σν ∼ 10−44 cm2.
The corresponding mean free path in matter at density ρ = nµmu is 'ν = 1/(nσν) = µmu/(ρσν) ∼
2 × 1020 cm/ρ, for µ ≈ 1. Even at densities as high as 106 g/cm3, this gives 'ν ∼ 3000R(. Therefore
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Nuclei with high binding energy tend to be produced (Fe, Co, Ni)

 (Ex.)


