1 スカラーポテンシャルの座標微分

$\displaystyle \deL{x}\phi\xt
= \frac{1}{4\pi\vepsilon_0} \Int dt'   \deL{x}\le...
... dt'   \delta\left(h(\vx,t,t')\right)\deL{x} \left[\frac{q}{R(\vx,t')}\right]
$

であるが、それぞれの項にについて計算を次のように行う。

$\displaystyle \hbox{(第弐項)}$ $\displaystyle =\frac{1}{4\pi \vepsilon_0} \Int dt'   \delta\left(h(\vx,t,t')\r...
...ilon_0} \Int dt'   \delta\left(h(\vx,t,t')\right) \frac{q(\vn)_x}{R^2(\vx,t')}$    
  $\displaystyle =-\frac{q}{4\pi \vepsilon_0}\frac{1}{\dfrac{d}{dt'} \left( t' -t ...
...t')\cdot \bm{\beta}(t')} \frac{(\vn)_x}{R^2(\vx,t')}\Bigg\vert _{h(\vx,t,t')=0}$    
  $\displaystyle =-\frac{q}{4\pi \vepsilon_0}\frac{1}{\kappa(t')} \frac{(\vn)_x}{R^2(\vx,t')}\Bigg\vert _{h(\vx,t,t')=0}$    

$\displaystyle \hbox{(第壱項)}$ $\displaystyle =\frac{1}{4\pi\vepsilon_0} \Int dt'   \deL{x}\left[ \delta\left(...
... +\frac{\left\vert\vx-\vx'(t')\right\vert}{c} \right)\right]\frac{1}{R(\vx,t')}$    
  $\displaystyle = \frac{q}{4\pi\vepsilon_0} \frac{1}{c} \Int dy   \di{t'}{y} \fr...
... \deL{y} \delta(t-y),\qquad y= t' + \frac{\left\vert\vx-\vx'(t')\right\vert}{c}$    
  $\displaystyle =-\frac{q}{4\pi\vepsilon_0} \frac{1}{c} \Int dy   \deL{y}\left( ...
...} \frac{(\vn)_x}{R(\vx,t')} \right)\delta(t-y) \qquad \because \hbox{部分積分}$    
  $\displaystyle =-\frac{q}{4\pi\vepsilon_0} \frac{1}{c} \deL{t} \left[\di{t'}{t} ...
...'}{t}\deL{t'} \left[\di{t'}{t} \frac{(\vn)_x}{R(\vx,t')}\right]_{h(\vx,t,t')=0}$    
  $\displaystyle = -\frac{q}{4\pi\vepsilon_0} \frac{1}{c} \frac{1}{\kappa(t')}\deL...
...]_{h(\vx,t,t')=0} \qquad \because  \di{t'}{t}=\del{t'}{t}=\frac{1}{\kappa(t')}$    

よって、

$\displaystyle \deL{x} \phi\xt =-\frac{q}{4\pi\vepsilon_0} \frac{1}{c} \frac{1}{...
...n_0}\frac{1}{\kappa(t')} \frac{(\vn)_x}{R^2(\vx,t')}\Bigg\vert _{h(\vx,t,t')=0}$ (33)

となる。

著者: 茅根裕司 chinone_at_astr.tohoku.ac.jp