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1 Metric of a 2D spherical shell

We see in various books on Cosmology that distance
(metric) can be specified on a 2D spherical shell in
the form:

ds2 =
dr2

1−Kr2
+ r2dφ2 (1)

But hardly any of them have a good explanation
on exactly what it means; they just say that K = 0 is
a plane (obvious), but don’t elaborate on how K = 1
shows the equation of a spherical shell! Later they
extend it to a 3D spherical shell in a 4D space. The
thing that was particularly hard for me to under-
stand the first time I confronted this metric was that:
What are r? It isn’t the radius since we are talk-
ing about a spherical shell so the distance from the
center (the radius) should not change. Here is the
explanation:

To understand this relation first think of a flat, 2D
surface; Fig.1. Two of the most common ways to de-
fine the points on a 2D surface is the (x, y) cartesian
coordinates or the (r, φ) polar coordinates, both cen-
tered on A. The most general infinitesimal change in
these can be to: (x+ dx, y + dy) or (r + dr, φ+ dφ),
based on which coordinates you use. dx and dy are
along the x and y coordinates and not drawn in Fig.1.
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Figure 1: Polar coordinates on a 2D surface

Using the Pythagorean theorem, we can simply see
that the distance that results from such a change of
position in the 2D cartesian coordinates is:

ds2 = dx2 + dy2 (2)

and for the polar coordinates we can write:

ds2 = dr2 + r2dφ2 (3)

Which is just eq.1 with K = 0.
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As I explained above, this problem is later gener-
alized to a 3D surface. So it is very important to
grasp the concept in this much simpler level rather
than the next, so imagine your self as a 2D creature
on this plane, completely unable to physically imag-
ine a third dimention, but able do mathematics.

How could such a creature on the point A know if
the flat and easy to understand world it thinks it lives
in (Fig.1) is correct? The world he lives in might
equally be a locally flat but globally curved surface
like Fig.2. The answer to this question but for a 3D
being (us) is the whole purpose to this discussion in
all the books and one of the main questions still alive
in Cosmology. So here we want to give that creature
the tools to discover the curvature of the universe it
lives in.

R

r

z

R− z θ

x

y

z

A

O

φ

P

P ′r

Figure 2: Polar coordinates on a 2D surface

To do that, we assume a flat, third cartesian co-
ordinate that is orthogonal to the first two1; z. We
take the 2D observer’s position to be point A of Fig.2,
that is also the only point that the two surfaces (flat
and curved) share.

In an infinite 3D catesian space, distance can be
expressed as:

ds2 = dx2 + dy2 + dz2

1The 2D creature is unable to physically imagine this di-
mention, but can do the same mathematical process.
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2 1 METRIC OF A 2D SPHERICAL SHELL

or

ds2 = dr2 + r2dφ2 + dz2 (4)

but we are not dealing with such a space, we have a
2D spherical shell, so let’s constrain the three carte-
sian coordinates so we can find ds2 only on the spher-
ical shell. We take an arbitary point P for this pur-
pose on the spherical shell, it’s image on the flat
plane is shown as P ′ which is a distance r from A.
From the dark triangle in Fig.2 we see that:

sin θ =
r

R
cos θ =

R− z
R

using sin2 θ + cos2 θ = 1, we get: z2 − 2Rz + r2 = 0,
the solution of this can be found to be:

z = R

(
1±

√
1− r2

R2

)
(5)

To see how z will change with a small change in r
we find the derivative to be:

dz =
∓r
R

(
1√

1− r2/R2

)
dr (6)

We can’t take both answers, so we limit outselves
to one hemisphere and take the + sign. Placing this
value of dz in eq.4, we find:

ds2 =
dr2

1− r2/R2
+ r2dφ2 (7)

So we see that if we take K = 1/R2, then the
two equations 1&7 will be equal. When the books
say K = 1 is a spherical shell, they are talking of a
spherical shell with radius R = 1. They then multi-
ply an a(t) to the whole right side of the equation to
set the scale:

ds2 = a2(t)

(
dr2

1− r2/R2
+ r2dφ2

)
(8)

Very important: In deriving this equation we
only used half of the sphere in choosing either of
the + or − signs from eqs.5&6. So this metric is
only valid for a hemisphere of a 2D spherical shell,
so when we use this metric to find properties of the
whole space we have to multiply it by 2.

To get a clear understanding of this equation
and understand the relation between dr and ds, we
should place our selves on the spherical shell; have
a look at Fig 3. It is clear that dr is the differential
distance on a flat surface; for a path between A to
B′, which is the image of B on the flat plane. ds
is the differential distance between A and B along
the surface of the sphere. So, dr and dφ in eqs.7&8,
are still those of the flat polar coordinates; the gray
plane in Fig.3

Lets solve eq.7 for the condition in Fig.3 to com-
plete the explanation: Assume that the radius of this
sphere is R and the distance between A and B′ to
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Figure 3: Comparison of flat and curved surfaces.

also be R. It is evident that dφ = 0 because φ doesn’t
change in this movement, so eq. 7 would lead to:

S2 =

(∫
ds

)2

=

∫
ds2 =

(∫ R

0

dr√
1− r2/R2

)2

It can be shown that∫ a

0

dx√
1− x2/a2

=
π

2
a

We thus find S: S = (π/2)a.
The fact that this metric only holds for half of

the spherical surface is also evident from Fig 3: if
B was positioned in the bottom hemisphere, then
with increasing distance on the spherical shell, the
distance on the flat plane would decrease! We can
also see the concept that a flat universe is “closed”
using Fig.3: for values of r > R, we cannot make
a connection between the two surfaces any more, a
discussion regarding the volume of this space can be
seen in §3.

So how can that 2D intelligent creature find out
if he is on a curved surface or flat one? eq.7 uses
the easy to understand coordinates in his flat sur-
face (r, φ), so all he has to do is to measure a certain
distance, if that distance is related to dr and dφ with
eq.3, then his universe is flat, if that distance is gov-
erned by eq.7 then it’s universe is curved in the form
of a spherical shell, knowing the distance it can even
measure the radius of curvature. In today’s cosmol-
ogy, we still have not been able to reach the sufficient
accuracy in our measurements to distinguish between
these two equations.
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2 Metric of a 3D spherical shell

Please keep the analogy between this section and §1
in mind while reading this. In a flat 3D universe,
two of the most common methods to define distance
between two points is by using the 3D cartesian co-
ordinates (x, y, z) or (r, θ, φ). For the cartesian coor-
dinates distance is written as:

ds2 = dx2 + dy2 + dz2

using the spherical coordinates we can write the dis-
tance as:

ds2 = dr2 + r2(dθ2 + sin2 θdφ2) (9)

Like the 2D creature in §1 that could not imagine
a 2D surface in a 3D space, we cannot imagine a 3D
surface in a 4D space. Such surfaces, that have one
dimention less than the space they exist in are called
a “hypersurface”. So I cannot use figures any more,
like that creature in §1, you can only rely on your
mathematics, but when ever imagination is needed
you can put your self in that creature’s shoes and
imagine the conditions.

So like §1, we assume an extra dimention, to help
us in the mathematics. Let’s call it w. So, distance
in its most general form can be written as:

ds2 = dr2 + r2(dθ2 + sin2 θdφ2) + dw2 (10)

Exactly the same mathematics as we applied in §1
can be repeated to get to eq.6, but this time instead
of dz, we have found the relation between dw and
spherical coordinate r. Exactly similar to §1, we just
have to square this and replace it in eq.10, we then
take K = 1/R and multiply the whole right side by
the scale factor a(t) to get:

ds2 = a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
(11)

So similar to §1, to find out if our space is curved
or not, we simply have to find the distance to a point
we know the distance of and see if it changes with
K = 0 or K = 1 in eq.11. Unfortunately this process
is much easier said than done!

3 Volume of a Closed Universe

Lets have a look at how the volume of a closed FRW
universe is 2π2a3(t)x3

u.
In an orthogonal space (where dqidqj = δij):

dV =
∏
i

√
hidqi, where hi are the diagonal mem-

bers of the hij the metric tensor. For example, for
the three-dimentional spherical coordinates (eq.9):
where hr = 1; hθ = r2 and hφ = r2 sin2 θ, dv =
dr × rdθ × r sin θdφ. So breaking the FRW metric
(eq.11) into its components:

√
hx = a(t)/

√
1−Kr2,√

hθ = a(t)r,
√
hφ = a(t)r sin θ. So;

V = a3(t)

∞∫
r=0

r2dr√
1−Kr2

π∫
θ=0

2π∫
φ=0

sin θdθdφ

= 4πa3(t)

∞∫
r=0

r2dx√
1−Kr2

If we take K = 1/R2; R being real (closed FRW
universe), then the upper limit of the integral cannot
extend to r > R and the volume will be: π2a3(t)R3.
But we have to have in mind that in the derivation
of the metric for K = 1, only half of the space was
considered (positive in the 4th dimention), so the
final value has to be multiplied by 2. The plots of
V/a3(t) can be seen in Fig. 4 for all three cases of
K = {1, 0,−1}.
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Figure 4: Plots to show how the volume of the universe is
“closed” for the k=1 cosmologies but “open” for the k=0 or
k=1 (which extend to infinity)
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4 Evolution of densities

Another thing that books don’t usually elaborate on
is the evolution of densities. I will assume you know
how we reached:

H(z) = H0E(z)

where:

E(z) = [ΩΛ,0+ΩK(1+z)2+Ωm,0(1+z)3+Ωγ,0(1+z)4]

where we take the values of the current Cosmic den-
sity parameters from observational results. ΩΛ,0 =
0.75 ± 0.2, ΩK ≈ 0, Ωm,0 = 0.27 ± 0.05, Ωγ,0 =
4.2× 10−5h−2 where h = H0/100 and H0 ≈ 71. Us-
ing this definition for E(z) we can find the evolution
of the different cosmic density parameters. We first
look at the definition of the ciritical density:

ρcrit(z) =
3H2(z)

8πG
=

3H2
0 (z)

8πG
E2(z) = ρcrit,0E

2(z)

Before continuing lets have a look at the plots for this
eqation in Fig.5, where you can see the evolution of
the critical density both in terms of redshift and the
age of the universe. I have taken ρcrit,0 = 1 in this
figure. I have derived the age of the universe at each
redshift based on this integral:

t(z) =

a(z)∫
0

da

ȧ
=

1

H0

∞∫
z

dz

(1 + z)E(z)
(12)

Lets have a closer look at Fig.5; As you can see,
both the vertical and horizontal axis’ have a logarith-
mic scale. The z = 0 in the top figure corresponds
to the local universe while t = 0 in the bottom corre-
sponds to the beginning of the universe, so in the red-
shift (top) plot, the local universe can be seen more
precisely while in the universe age (bottom) plot, the
behavior in the early universe is more clearly seen.
This is a point that although mathematically obvi-
ous, but is rarely elaborated on in Cosmology books:
that the critical density it’s self evolves and has be-
come significantly smaller compared to the early uni-
verse, this is logical since the Energy of the universe
has not changed but it’s volume has! You have to
keep this in mind for the following:

Looking at the definition of the cosmic density pa-
rameters in general:

Ωx =
ρx
ρcrit

=
ρx,0(1 + z)3(1+w)

ρcrit,0E2(z)
= Ωx,0

(1 + z)3(1+w)

E2(z)
(13)

Where w = 0 for Matter(Ωm), 1/3 for relativistic
particles(Ωγ), −1 for Dark energy(ΩΛ) and −1/3 for
Curvature(ΩK). From eq.13 we can find the evolu-
tion of each one of these components: Fig.6. Just
like above, the top (Redshift) plot has more empha-
sis on the near by (z < 1) universe while the bottom
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Figure 5: Evolution of Critical Density as a function of red-
shift (top) and Age of Universe (bottom)

(Age of Universe) plot emphasizes more on the very
early ages.

You can see the points of Matter-Radiation equal-
ity and Matter-Dark Energy Equality in Fig.6 as the
colliding points of the two respective curves, I have
put thin black lines to distinguish these points. Also,
to put things into a larger context, I have also added
the redshift and age of the universe at the time of
decoupling; When the Photons and Matter did not
significantly interact with each other any more and
thus the Cosmic Microwave Background originated.
In the figures I have distinguished this point with a
thicker gray vertical line. You can see the appropri-
ate values here.

zm,r ≈ 3149, tm,r ≈ 5.9× 104years

zdec ≈ 1100, tdec ≈ 3.7× 105years

zm,Λ ≈ 0.39, tm,Λ ≈ 9.6× 109years
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Figure 6: Evolution of the three components of energy den-
sity in the Universe as a function of redshift (top) and Age
of Universe (bottom). 1/E(z) is also included in these plots
since it is a fundamental part of each and for comparison.
The two thin horizontal black lines are at zm,r = 3149 and
zm,Λ = 0.39 in the top figure and tm,r = 5.9 × 104years and

tm,Λ = 9.6 × 109years for the bottom picture. They show
the redshifts and Age of universe in the two epochs of density
equality.
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